From 561d0f0155f4906d90eb7e73a3ff9cb28909126f Mon Sep 17 00:00:00 2001 From: Sébastien Dailly Date: Fri, 5 Feb 2021 09:08:39 +0100 Subject: Update project structure --- shapes/matrix/EltsI.ml | 28 --- shapes/matrix/Helpers.ml | 16 -- shapes/matrix/Matrix.ml | 529 ----------------------------------------------- shapes/matrix/MatrixI.ml | 105 ---------- shapes/matrix/Order.ml | 2 - shapes/matrix/dune | 3 - 6 files changed, 683 deletions(-) delete mode 100755 shapes/matrix/EltsI.ml delete mode 100755 shapes/matrix/Helpers.ml delete mode 100755 shapes/matrix/Matrix.ml delete mode 100755 shapes/matrix/MatrixI.ml delete mode 100755 shapes/matrix/Order.ml delete mode 100755 shapes/matrix/dune (limited to 'shapes/matrix') diff --git a/shapes/matrix/EltsI.ml b/shapes/matrix/EltsI.ml deleted file mode 100755 index fcfdb50..0000000 --- a/shapes/matrix/EltsI.ml +++ /dev/null @@ -1,28 +0,0 @@ -module type ORDERED_AND_OPERATIONAL = -sig - - (* Exception for from_string. Is raised when from_string is passed something - * that is not an elt *) - exception NonElt - - type t - - (* The zero element *) - val zero : t - - (* The one element *) - val one: t - - (* ts must be comparable *) - val compare : t -> t -> Order.order - - (* Basic mathematical operations must be possible *) - val add: t -> t -> t - - val subtract: t -> t -> t - - val multiply: t -> t -> t - - val divide: t -> t -> t - -end diff --git a/shapes/matrix/Helpers.ml b/shapes/matrix/Helpers.ml deleted file mode 100755 index 6980052..0000000 --- a/shapes/matrix/Helpers.ml +++ /dev/null @@ -1,16 +0,0 @@ -(* Takes in a string and a separator, and separates the string into a list of - * substrings where each substring is between two separators or between a - * separator and the beginning/end of the string *) -let explode (s: string) (space: string) : string list = - let rec build (curr: string) (buffer: string) (lst: string list) : string list = - let len = String.length curr in - if len = 0 then buffer::lst - else - let c = String.sub curr (len - 1) 1 in - if len = 1 then (c ^ buffer)::lst - else - let s' = String.sub curr 0 (len - 1) in - if c = space then build s' "" (buffer::lst) - else build s' (c ^ buffer) lst in - build (String.trim s) "" [] - diff --git a/shapes/matrix/Matrix.ml b/shapes/matrix/Matrix.ml deleted file mode 100755 index 7f1d54b..0000000 --- a/shapes/matrix/Matrix.ml +++ /dev/null @@ -1,529 +0,0 @@ -open Order - -module Order = Order - -(*************** Exceptions ***************) - -exception NonSquare -exception ImproperDimensions - -(* Functor so we can Abstract away! *) -module MakeMatrix (C: EltsI.ORDERED_AND_OPERATIONAL) : - (MatrixI.MATRIX with type elt = C.t) = -struct - - - (*************** End Exceptions ***************) - - (*************** Types ***************) - - type elt = C.t - - (* A matrix is a pair of dimension (n x p) and a array of arrays - * the first array is the row (n) and the second the column (p) *) - type matrix = (int * int) * (elt array array) - - (*************** End Types ***************) - - (*************** Base Functions ***************) - - (* catching negative dimensions AND 0 dimensions and too large - * of a dimension so we don't have to worry about it later *) - let empty (rows: int) (columns: int) : matrix = - if rows > 0 && columns > 0 then - try - let m = Array.make_matrix rows columns C.zero in ((rows,columns),m) - with _ -> - raise ImproperDimensions - else (* dimension is negative or 0 *) - raise ImproperDimensions - - (*************** End Base Functions ***************) - - (*************** Helper Functions ***************) - - (* get's the nth row of a matrix and returns (r, row) where r is the length - * of the row and row is a COPY of the original row. For example, calling - * calling get_row m 1 will return (3, |1 3 4 |) - * ________ - * m = | 1 3 4 | - * |*2 5 6 | - *) - (* aside: we don't check whether n < 1 because of our matrix invariant *) - let get_row (((n,p),m): matrix) (row: int) : int * elt array = - if row <= n then - let row' = Array.map (fun x -> x) m.(row - 1) in - (p, row') - else - raise (Failure "Row out of bounds.") - - (* similar to get_row. For m, get_column m 1 will return (2, |1 2|) *) - let get_column (((n,p),m): matrix) (column: int) : int * elt array = - if column <= p then - begin - let column' = Array.make n C.zero in - for i = 0 to n - 1 do - column'.(i) <- m.(i).(column - 1) - done; - (n, column') - end - else - raise (Failure "Column out of bounds.") - - (* sets the nth row of the matrix m to the specified array a. - * This is done IN-PLACE. Therefore the function returns unit. You should - * nonetheless enfore immutability whenever possible. For a clarification on - * what nth row means, look at comment for get_row above. *) - let set_row (((n, p), m): matrix) (row: int) (a: elt array) : unit = - if row <= n then - begin - assert(Array.length a = p); - for i = 0 to p - 1 do - m.(row - 1).(i) <- a.(i) - done; - end - else - raise (Failure "Row out of bounds.") - - (* Similar to set_row but sets the nth column instead *) - let set_column (((n,p),m): matrix) (column: int) (a: elt array) : unit = - if column <= p then - begin - assert(Array.length a = n); - for i = 0 to n - 1 do - m.(i).(column - 1) <- a.(i) - done; - end - else - raise (Failure "Column out of bounds.") - - (* returns the ij-th element of a matrix (not-zero indexed) *) - let get_elt (((n,p),m): matrix) ((i,j): int*int) : elt = - if i <= n && j <= p then - m.(i - 1).(j - 1) - else - raise ImproperDimensions - - (* Changes the i,j-th element of a matrix to e. Is not zero-indexed, and - * changes the matrix in place *) - let set_elt (((n,p),m): matrix) ((i,j): int*int) (e: elt) : unit = - if i <= n && j <= p then - m.(i - 1).(j - 1) <- e - else - raise ImproperDimensions - - (* similar to map, but applies to function to the entire matrix - * Returns a new matrix *) - let map (f: elt -> elt) (mat: matrix) : matrix = - let (dim,m) = mat in - (dim, Array.map (Array.map f) m) - - (* Just some wrapping of Array.iter made for Matrices! *) - let iter (f: elt -> unit) (mat: matrix) : unit = - let _, m = mat in - Array.iter (Array.iter f) m - - (* Just some wrapping of Array.iteri. Useful for pretty - * printing matrix. The index is (i,j). NOT zero-indexed *) - let iteri (f: int -> int -> elt -> unit) (mat: matrix) : unit = - let _, m = mat in - Array.iteri (fun i row -> Array.iteri (fun j e -> f i j e) row) m - - (* folds over each row using base case u and function f *) - (* could be a bit more efficient? *) - let reduce (f: 'a -> elt -> 'a) (u: 'a) (((p,q),m): matrix) : 'a = - let total = ref u in - for i = 0 to p - 1 do - for j = 0 to q - 1 do - total := f (!total) m.(i).(j) - done; - done; - !total - - let fold_row ~(f: elt array -> 'b) ((_,m): matrix) : 'b list = - - let call_row acc v = (f v)::acc in - Array.fold_left call_row [] m - |> List.rev - - - - - (* given two arrays, this will calculate their dot product *) - (* It seems a little funky, but this is done for efficiency's sake. - * In short, it tries to multiply each element by it's respective - * element until the one array is indexed out of bounds. If the - * other array is also out of bounds, then it returns their value. - * Otherwise, the arrays were the wrong size and raises ImproperDimension - - THE ABOVE COMMENT HAS NOT BEEN IMPLEMENTED - - Instead we calculate the length before starting - *) - let dot (v1: elt array) (v2: elt array) : elt = - let rec dotting (i: int) (total: elt) : elt = - if i = 0 then total - else - let curr = C.multiply v1.(i-1) v2.(i-1) in - dotting (i - 1) (C.add curr total) in - let len1, len2 = Array.length v1, Array.length v2 in - if len1 = len2 then dotting len1 C.zero - else raise ImproperDimensions - - (* function to expose the dimensions of a matrix *) - let get_dimensions (m: matrix) : (int * int) = - let ((x,y), _) = m in (x,y) - - (*************** End Helper Functions ***************) - - - (*************** Primary Matrix Functions ***************) - - (* scales a matrix by the appropriate factor *) - let scale (m: matrix) (sc: elt) : matrix = map (C.multiply sc) m - - (* Generates a matrix from a list of lists. The inners lists are the rows *) - let from_list (lsts : elt list list) : matrix = - let check_length (length: int) (lst: elt list) : int = - if List.length lst = length then length - else raise ImproperDimensions in - let p = List.length lsts in - match lsts with - | [] -> raise ImproperDimensions - | hd::tl -> - let len = List.length hd in - if List.fold_left check_length len tl = len then - ((p,len),Array.map Array.of_list (Array.of_list lsts)) - else - raise ImproperDimensions - - (* Generates a matrix from a list of lists. The inners lists are the rows *) - let from_array (arrs : elt array array) : matrix = - let check_length (length: int) (arr: elt array) : unit = - if Array.length arr = length then () - else raise ImproperDimensions in - let p = Array.length arrs in - match Array.length arrs with - | 0 -> raise ImproperDimensions - | _ -> - let len = Array.length (Array.get arrs 0) in - Array.iter (check_length len) arrs; - ((p, len), arrs) - - (* Adds two matrices. They must have the same dimensions *) - let add ((dim1,m1): matrix) ((dim2,m2): matrix) : matrix = - if dim1 = dim2 then - let n, p = dim1 in - let (dim', sum_m) = empty n p in - for i = 0 to n - 1 do - for j = 0 to p - 1 do - sum_m.(i).(j) <- C.add m1.(i).(j) m2.(i).(j) - done; - done; - (dim',sum_m) - else - raise ImproperDimensions - - - (* Multiplies two matrices. If the matrices have dimensions m x n and p x q, n - * and p must be equal, and the resulting matrix will have dimension n x q *) - let mult (matrix1: matrix) (matrix2: matrix) : matrix = - let ((m,n), _), ((p,q), _) = matrix1, matrix2 in - if n = p then - let (dim, result) = empty m q in - for i = 0 to m - 1 do - for j = 0 to q - 1 do - let (_,row), (_,column) = get_row matrix1 (i + 1), - get_column matrix2 (j + 1) in - result.(i).(j) <- dot row column - done; - done; - (dim,result) - else - raise ImproperDimensions - - (*************** Helper Functions for Row Reduce ***************) - - (* - (* returns the index of the first non-zero elt in an array*) - let zero (arr: elt array) : int option = - let index = ref 1 in - let empty (i: int option) (e: elt) : int option = - match i, C.compare e C.zero with - | None, Equal -> (index := !index + 1; None) - | None, _ -> Some (!index) - | _, _ -> i in - Array.fold_left empty None arr - - (* returns the the location of the nth non-zero - * element in the matrix. Scans column wise. So the nth non-zero element is - * the FIRST non-zero element in the nth non-zero column *) - let nth_nz_location (m: matrix) (_: int): (int*int) option = - let ((n,p), _) = m in - let rec check_col (to_skip: int) (j: int) = - if j <= p then - let (_,col) = get_column m j in - match zero col with - | None -> check_col to_skip (j + 1) - | Some i -> - if to_skip = 0 then - Some (i,j) - else (* we want a later column *) - check_col (to_skip - 1) (j + 1) - else None in - check_col (n - 1) 1 - - (* returns the the location of the first - * non-zero and non-one elt. Scans column wise, from - * left to right. Basically, it ignores columns - * that are all zero or that *) - let fst_nz_no_loc (m: matrix): (int*int) option = - let ((_, p), _) = m in - let rec check_col (j: int) = - if j <= p then - let (_,col) = get_column m j in - match zero col with - | None -> check_col (j + 1) - | Some i -> - match C.compare col.(i-1) C.one with - | Equal -> check_col (j + 1) - | _ -> Some (i,j) - else None in - check_col 1 - *) - - (* Compares two elements in an elt array and returns the greater and its - * index. Is a helper function for find_max_col_index *) - let compare_helper (e1: elt) (e2: elt) (ind1: int) (ind2: int) : (elt*int) = - match C.compare e1 e2 with - | Equal -> (e2, ind2) - | Greater -> (e1, ind1) - | Less -> (e2, ind2) - - (* Finds the element with the greatest absolute value in a column. Is not - * 0-indexed. If two elements are both the maximum value, returns the one with - * the lowest index. Returns None if this element is zero (if column is all 0) - *) - let find_max_col_index (array1: elt array) (start_index: int) : int option = - let rec find_index (max_index: int) (curr_max: elt) (curr_index: int) - (arr: elt array) = - if curr_index = Array.length arr then - (if curr_max = C.zero then None - else Some (max_index+1)) (* Arrays are 0-indexed but matrices aren't *) - else - (match C.compare arr.(curr_index) C.zero with - | Equal -> find_index max_index curr_max (curr_index+1) arr - | Greater -> - (let (el, index) = compare_helper (arr.(curr_index)) - curr_max curr_index max_index in - find_index index el (curr_index+1) arr) - | Less -> - (let abs_curr_elt = C.subtract C.zero arr.(curr_index) in - let (el, index) = compare_helper abs_curr_elt curr_max curr_index - max_index in - find_index index el (curr_index+1) arr)) - in - find_index 0 C.zero (start_index -1) array1 - - (* Basic row operations *) - (* Scales a row by sc *) - let scale_row (m: matrix) (num: int) (sc: elt) : unit = - let (_, row) = get_row m num in - let new_row = Array.map (C.multiply sc) row in - set_row m num new_row - - (* Swaps two rows of a matrix *) - let swap_row (m: matrix) (r1: int) (r2: int) : unit = - let (len1, row1) = get_row m r1 in - let (len2, row2) = get_row m r2 in - let _ = assert (len1 = len2) in - let _ = set_row m r1 row2 in - let _ = set_row m r2 row1 in - () - - (* Subtracts a multiple of r2 from r1 *) - let sub_mult (m: matrix) (r1: int) (r2: int) (sc: elt) : unit = - let (len1, row1) = get_row m r1 in - let (len2, row2) = get_row m r2 in - let _ = assert (len1 = len2) in - for i = 0 to len1 - 1 do (* Arrays are 0-indexed *) - row1.(i) <- C.subtract row1.(i) (C.multiply sc row2.(i)) - done; - set_row m r1 row1 - - (*************** End Helper Functions for Row Reduce ***************) - - (* Returns the row reduced form of a matrix. Is not done in place, but creates - * a new matrix *) - let row_reduce (mat: matrix) : matrix = - let[@tailcall] rec row_reduce_h (n_row: int) (n_col: int) (mat2: matrix) : unit = - let ((num_row, _), _) = mat2 in - if (n_col = num_row + 1) then () - else - let (_,col) = get_column mat2 n_col in - match find_max_col_index col n_row with - | None (* Column all 0s *) -> row_reduce_h n_row (n_col+1) mat2 - | Some index -> - begin - swap_row mat2 index n_row; - let pivot = get_elt mat2 (n_row, n_col) in - scale_row mat2 (n_row) (C.divide C.one pivot); - for i = 1 to num_row do - if i <> n_row then sub_mult mat2 i n_row (get_elt mat2 (i,n_col)) - done; - row_reduce_h (n_row+1) (n_col+1) mat2 - end - in - (* Copies the matrix *) - let ((n,p),m) = mat in - let (dim,mat_cp) = empty n p in - for i = 0 to n - 1 do - for j = 0 to p - 1 do - mat_cp.(i).(j) <- m.(i).(j) - done; - done; - let _ = row_reduce_h 1 1 (dim,mat_cp) in (dim,mat_cp) - - (*************** End Main Functions ***************) - - (*************** Optional module functions ***************) - - (* calculates the trace of a matrix *) - let trace (((n,p),m): matrix) : elt = - let rec build (elt: elt) (i: int) = - if i > -1 then - build (C.add m.(i).(i) elt) (i - 1) - else - elt in - if n = p then build C.zero (n - 1) - else raise ImproperDimensions - - (* calculates the transpose of a matrix and retuns a new one *) - let transpose (((n,p),m): matrix) = - let (dim,m') = empty p n in - for i = 0 to n - 1 do - for j = 0 to p - 1 do - m'.(j).(i) <- m.(i).(j) - done; - done; - assert(dim = (p,n)); - ((p,n),m') - - (* Returns the inverse of a matrix. Uses a pretty simple algorithm *) - let inverse (mat: matrix) : matrix = - let ((n, p), _) = mat in - if n = p then - (* create augmented matrix *) - let augmented = empty n (2*n) in - for i = 1 to n do - let (dim,col) = get_column mat i in - let arr = Array.make n C.zero in - begin - assert(dim = n); - arr.(i-1) <- C.one; - set_column augmented i col; - set_column augmented (n + i) arr - end - done; - let augmented' = row_reduce augmented in - (* create the inverted matrix and fill in with appropriate values *) - let inverse = empty n n in - for i = 1 to n do - let (dim, col) = get_column augmented' (n + i) in - let _ = assert(dim = n) in - let _ = set_column inverse i col in - () - done; - inverse - else - raise NonSquare - - (***************** HELPER FUNCTIONS FOR DETERMINANT *****************) - (* creates an identity matrix of size n*) - let create_identity (n:int) : matrix = - let (dim,m) = empty n n in - for i = 0 to n - 1 do - m.(i).(i) <- C.one - done; - (dim,m) - - (* Finds the index of the maximum value of an array *) - let find_max_index (arr: elt array) (start_index : int) : int = - let rec find_index (max_index: int) (curr_index: int) = - if curr_index = Array.length arr then max_index+1 - else - match C.compare arr.(curr_index) arr.(max_index) with - | Equal | Less -> find_index max_index (curr_index + 1) - | Greater -> find_index curr_index (curr_index + 1) in - find_index (start_index - 1) start_index - - (* Creates the pivoting matrix for A. Returns swqps. Adapted from - * http://rosettacode.org/wiki/LU_decomposition#Common_Lisp *) - let pivotize (((n,p),m): matrix) : matrix * int = - if n = p then - let swaps = ref 0 in - let pivot_mat = create_identity n in - for j = 1 to n do - let (_,col) = get_column ((n,p),m) j in - let max_index = find_max_index col j in - if max_index <> j then - (swaps := !swaps + 1; swap_row pivot_mat max_index j) - else () - done; - (pivot_mat,!swaps) - else raise ImproperDimensions - - (* decomposes a matrix into a lower triangualar, upper triangualar - * and a pivot matrix. It returns (L,U,P). Adapted from - * http://rosettacode.org/wiki/LU_decomposition#Common_Lisp *) - let lu_decomposition (((n,p),m): matrix) : (matrix*matrix*matrix)*int = - if n = p then - let mat = ((n,p),m) in - let lower, upper, (pivot,s) = empty n n, empty n n, pivotize mat in - let (_ ,l),(_ ,u), _ = lower,upper,pivot in - let ((_, _),mat') = mult pivot mat in - for j = 0 to n - 1 do - l.(j).(j) <- C.one; - for i = 0 to j do - let sum = ref C.zero in - for k = 0 to i - 1 do - sum := C.add (!sum) (C.multiply u.(k).(j) l.(i).(k)) - done; - u.(i).(j) <- C.subtract mat'.(i).(j) (!sum) - done; - for i = j to n - 1 do - let sum = ref C.zero in - for k = 0 to j - 1 do - sum := C.add (!sum) (C.multiply u.(k).(j) l.(i).(k)) - done; - let sub = C.subtract mat'.(i).(j) (!sum) in - l.(i).(j) <- C.divide sub u.(j).(j) - done; - done; - (lower,upper,pivot),s - else raise ImproperDimensions - - (* Computes the determinant of a matrix *) - let determinant (m: matrix) : elt = - try - let ((n,p), _) = m in - if n = p then - let rec triangualar_det (a,mat) curr_index acc = - if curr_index < n then - let acc' = C.multiply mat.(curr_index).(curr_index) acc in - triangualar_det (a,mat) (curr_index + 1) acc' - else acc in - let ((dim1,l),(dim2,u), _),s = lu_decomposition m in - let det1, det2 = triangualar_det (dim1,l) 0 C.one, - triangualar_det (dim2,u) 0 C.one in - if s mod 2 = 0 then C.multiply det1 det2 - else C.subtract C.zero (C.multiply det1 det2) - else raise ImproperDimensions - with - | _ -> C.zero - - - (*************** Optional module functions ***************) - - -end diff --git a/shapes/matrix/MatrixI.ml b/shapes/matrix/MatrixI.ml deleted file mode 100755 index fbc4e21..0000000 --- a/shapes/matrix/MatrixI.ml +++ /dev/null @@ -1,105 +0,0 @@ -exception NonSquare -exception ImproperDimensions - -module type MATRIX = -sig - - (******** TYPES ********) - type elt - - type matrix - - (* empty matrix of nxp dimensions *) - val empty : int -> int -> matrix - - (* Takes a list of lists and converts that to a matrix *) - val from_list : (elt list list) -> matrix - - val from_array: elt array array -> matrix - - (******** OPERATIONS ON ONE MATRIX ********) - (* Takes in a matrix and returns its dimensions. ie, nxp *) - val get_dimensions : matrix -> (int * int) - - (* get's the row of a matrix: Not zero-indexed. *) - val get_row : matrix -> int -> (int * elt array) - - (* similar to get_row *) - val get_column: matrix -> int -> (int * elt array) - - (* sets the row of a matrix in place! Not zero-index *) - val set_row: matrix -> int -> elt array -> unit - - (* similar to set_row, but for a column *) - val set_column: matrix -> int -> elt array -> unit - - (* gets the element at the specified index. *) - val get_elt: matrix -> (int * int) -> elt - - (* sets the element at the specified index *) - val set_elt: matrix -> (int * int) -> elt -> unit - - (* Scales every element in the matrix by another elt *) - val scale : matrix -> elt -> matrix - - - (******** MORE ADVANCED SINGLE MATRIX OPERATIONS ********) - (* Returns the row reduced form of a matrix *) - val row_reduce: matrix -> matrix - (* We will implement the algorithm found in the link above *) - - (* Returns the inverse of a matrix *) - val inverse: matrix -> matrix - - (*Transposes a matrix. If the input has dimensions m x n, the output will - * have dimensions n x m *) - val transpose: matrix -> matrix - - (* Returns the trace of the matrix *) - val trace: matrix -> elt - - (******** OPERATIONS ON TWO MATRICES ********) - (* Adds two matrices. They must have the same dimensions *) - val add : matrix -> matrix -> matrix - - (* Multiplies two matrices. If the matrices have dimensions m x n and p x q, n - * and p must be equal, and the resulting matrix will have dimension m x q *) - val mult: matrix -> matrix -> matrix - - (**** Other Library Functions ***) - (* Function to make over our matrices *) - val map : (elt -> elt) -> matrix -> matrix - - (*val iter : (elt -> unit) -> matrix -> unit*) - - (* Returns the LUP decomposition of a matrix *) - val lu_decomposition : matrix -> (matrix * matrix * matrix) * int - - (* Returns the determinant of the matrix *) - val determinant: matrix -> elt - - (************** Other Library Functions *************) - val iter : (elt -> unit) -> matrix -> unit - - val iteri : (int -> int -> elt -> unit) -> matrix -> unit - - (* folds over each row using base case u and function f *) - val reduce: ('a -> elt -> 'a) -> 'a -> matrix -> 'a - - val fold_row: f:(elt array -> 'b) -> matrix -> 'b list - - (********** Specific for Simplex Algorithm ***********) - (** All of the following functions will raise ImproperDimensions - * Exception if the matrix is not the right size for the operation - **) - - (* Scales a row *) - val scale_row: matrix -> int -> elt -> unit - - (* Swaps two rows *) - val swap_row: matrix -> int -> int -> unit - - (* Subtracts a multiple of one row (the 2nd int) from another (the 1st int) *) - val sub_mult: matrix -> int -> int -> elt -> unit - -end diff --git a/shapes/matrix/Order.ml b/shapes/matrix/Order.ml deleted file mode 100755 index 5f2aa22..0000000 --- a/shapes/matrix/Order.ml +++ /dev/null @@ -1,2 +0,0 @@ -(* Defines a general ordering type *) -type order = Equal | Less | Greater diff --git a/shapes/matrix/dune b/shapes/matrix/dune deleted file mode 100755 index 1c0cab6..0000000 --- a/shapes/matrix/dune +++ /dev/null @@ -1,3 +0,0 @@ -(library - (name matrix) -) -- cgit v1.2.3