open Order module Order = Order (*************** Exceptions ***************) exception NonSquare exception ImproperDimensions (* Functor so we can Abstract away! *) module MakeMatrix (C: EltsI.ORDERED_AND_OPERATIONAL) : (MatrixI.MATRIX with type elt = C.t) = struct (*************** End Exceptions ***************) (*************** Types ***************) type elt = C.t (* A matrix is a pair of dimension (n x p) and a array of arrays * the first array is the row (n) and the second the column (p) *) type matrix = (int * int) * (elt array array) (*************** End Types ***************) (*************** Base Functions ***************) (* catching negative dimensions AND 0 dimensions and too large * of a dimension so we don't have to worry about it later *) let empty (rows: int) (columns: int) : matrix = if rows > 0 && columns > 0 then try let m = Array.make_matrix rows columns C.zero in ((rows,columns),m) with _ -> raise ImproperDimensions else (* dimension is negative or 0 *) raise ImproperDimensions (*************** End Base Functions ***************) (*************** Helper Functions ***************) (* get's the nth row of a matrix and returns (r, row) where r is the length * of the row and row is a COPY of the original row. For example, calling * calling get_row m 1 will return (3, |1 3 4 |) * ________ * m = | 1 3 4 | * |*2 5 6 | *) (* aside: we don't check whether n < 1 because of our matrix invariant *) let get_row (((n,p),m): matrix) (row: int) : int * elt array = if row <= n then let row' = Array.map (fun x -> x) m.(row - 1) in (p, row') else raise (Failure "Row out of bounds.") (* similar to get_row. For m, get_column m 1 will return (2, |1 2|) *) let get_column (((n,p),m): matrix) (column: int) : int * elt array = if column <= p then begin let column' = Array.make n C.zero in for i = 0 to n - 1 do column'.(i) <- m.(i).(column - 1) done; (n, column') end else raise (Failure "Column out of bounds.") (* sets the nth row of the matrix m to the specified array a. * This is done IN-PLACE. Therefore the function returns unit. You should * nonetheless enfore immutability whenever possible. For a clarification on * what nth row means, look at comment for get_row above. *) let set_row (((n, p), m): matrix) (row: int) (a: elt array) : unit = if row <= n then begin assert(Array.length a = p); for i = 0 to p - 1 do m.(row - 1).(i) <- a.(i) done; end else raise (Failure "Row out of bounds.") (* Similar to set_row but sets the nth column instead *) let set_column (((n,p),m): matrix) (column: int) (a: elt array) : unit = if column <= p then begin assert(Array.length a = n); for i = 0 to n - 1 do m.(i).(column - 1) <- a.(i) done; end else raise (Failure "Column out of bounds.") (* returns the ij-th element of a matrix (not-zero indexed) *) let get_elt (((n,p),m): matrix) ((i,j): int*int) : elt = if i <= n && j <= p then m.(i - 1).(j - 1) else raise ImproperDimensions (* Changes the i,j-th element of a matrix to e. Is not zero-indexed, and * changes the matrix in place *) let set_elt (((n,p),m): matrix) ((i,j): int*int) (e: elt) : unit = if i <= n && j <= p then m.(i - 1).(j - 1) <- e else raise ImproperDimensions (* similar to map, but applies to function to the entire matrix * Returns a new matrix *) let map (f: elt -> elt) (mat: matrix) : matrix = let (dim,m) = mat in (dim, Array.map (Array.map f) m) (* Just some wrapping of Array.iter made for Matrices! *) let iter (f: elt -> unit) (mat: matrix) : unit = let _, m = mat in Array.iter (Array.iter f) m (* Just some wrapping of Array.iteri. Useful for pretty * printing matrix. The index is (i,j). NOT zero-indexed *) let iteri (f: int -> int -> elt -> unit) (mat: matrix) : unit = let _, m = mat in Array.iteri (fun i row -> Array.iteri (fun j e -> f i j e) row) m (* folds over each row using base case u and function f *) (* could be a bit more efficient? *) let reduce (f: 'a -> elt -> 'a) (u: 'a) (((p,q),m): matrix) : 'a = let total = ref u in for i = 0 to p - 1 do for j = 0 to q - 1 do total := f (!total) m.(i).(j) done; done; !total let fold_row ~(f: elt array -> 'b) ((_,m): matrix) : 'b list = let call_row acc v = (f v)::acc in Array.fold_left call_row [] m |> List.rev (* given two arrays, this will calculate their dot product *) (* It seems a little funky, but this is done for efficiency's sake. * In short, it tries to multiply each element by it's respective * element until the one array is indexed out of bounds. If the * other array is also out of bounds, then it returns their value. * Otherwise, the arrays were the wrong size and raises ImproperDimension THE ABOVE COMMENT HAS NOT BEEN IMPLEMENTED Instead we calculate the length before starting *) let dot (v1: elt array) (v2: elt array) : elt = let rec dotting (i: int) (total: elt) : elt = if i = 0 then total else let curr = C.multiply v1.(i-1) v2.(i-1) in dotting (i - 1) (C.add curr total) in let len1, len2 = Array.length v1, Array.length v2 in if len1 = len2 then dotting len1 C.zero else raise ImproperDimensions (* function to expose the dimensions of a matrix *) let get_dimensions (m: matrix) : (int * int) = let ((x,y), _) = m in (x,y) (*************** End Helper Functions ***************) (*************** Primary Matrix Functions ***************) (* scales a matrix by the appropriate factor *) let scale (m: matrix) (sc: elt) : matrix = map (C.multiply sc) m (* Generates a matrix from a list of lists. The inners lists are the rows *) let from_list (lsts : elt list list) : matrix = let check_length (length: int) (lst: elt list) : int = if List.length lst = length then length else raise ImproperDimensions in let p = List.length lsts in match lsts with | [] -> raise ImproperDimensions | hd::tl -> let len = List.length hd in if List.fold_left check_length len tl = len then ((p,len),Array.map Array.of_list (Array.of_list lsts)) else raise ImproperDimensions (* Generates a matrix from a list of lists. The inners lists are the rows *) let from_array (arrs : elt array array) : matrix = let check_length (length: int) (arr: elt array) : unit = if Array.length arr = length then () else raise ImproperDimensions in let p = Array.length arrs in match Array.length arrs with | 0 -> raise ImproperDimensions | _ -> let len = Array.length (Array.get arrs 0) in Array.iter (check_length len) arrs; ((p, len), arrs) (* Adds two matrices. They must have the same dimensions *) let add ((dim1,m1): matrix) ((dim2,m2): matrix) : matrix = if dim1 = dim2 then let n, p = dim1 in let (dim', sum_m) = empty n p in for i = 0 to n - 1 do for j = 0 to p - 1 do sum_m.(i).(j) <- C.add m1.(i).(j) m2.(i).(j) done; done; (dim',sum_m) else raise ImproperDimensions (* Multiplies two matrices. If the matrices have dimensions m x n and p x q, n * and p must be equal, and the resulting matrix will have dimension n x q *) let mult (matrix1: matrix) (matrix2: matrix) : matrix = let ((m,n), _), ((p,q), _) = matrix1, matrix2 in if n = p then let (dim, result) = empty m q in for i = 0 to m - 1 do for j = 0 to q - 1 do let (_,row), (_,column) = get_row matrix1 (i + 1), get_column matrix2 (j + 1) in result.(i).(j) <- dot row column done; done; (dim,result) else raise ImproperDimensions (*************** Helper Functions for Row Reduce ***************) (* (* returns the index of the first non-zero elt in an array*) let zero (arr: elt array) : int option = let index = ref 1 in let empty (i: int option) (e: elt) : int option = match i, C.compare e C.zero with | None, Equal -> (index := !index + 1; None) | None, _ -> Some (!index) | _, _ -> i in Array.fold_left empty None arr (* returns the the location of the nth non-zero * element in the matrix. Scans column wise. So the nth non-zero element is * the FIRST non-zero element in the nth non-zero column *) let nth_nz_location (m: matrix) (_: int): (int*int) option = let ((n,p), _) = m in let rec check_col (to_skip: int) (j: int) = if j <= p then let (_,col) = get_column m j in match zero col with | None -> check_col to_skip (j + 1) | Some i -> if to_skip = 0 then Some (i,j) else (* we want a later column *) check_col (to_skip - 1) (j + 1) else None in check_col (n - 1) 1 (* returns the the location of the first * non-zero and non-one elt. Scans column wise, from * left to right. Basically, it ignores columns * that are all zero or that *) let fst_nz_no_loc (m: matrix): (int*int) option = let ((_, p), _) = m in let rec check_col (j: int) = if j <= p then let (_,col) = get_column m j in match zero col with | None -> check_col (j + 1) | Some i -> match C.compare col.(i-1) C.one with | Equal -> check_col (j + 1) | _ -> Some (i,j) else None in check_col 1 *) (* Compares two elements in an elt array and returns the greater and its * index. Is a helper function for find_max_col_index *) let compare_helper (e1: elt) (e2: elt) (ind1: int) (ind2: int) : (elt*int) = match C.compare e1 e2 with | Equal -> (e2, ind2) | Greater -> (e1, ind1) | Less -> (e2, ind2) (* Finds the element with the greatest absolute value in a column. Is not * 0-indexed. If two elements are both the maximum value, returns the one with * the lowest index. Returns None if this element is zero (if column is all 0) *) let find_max_col_index (array1: elt array) (start_index: int) : int option = let rec find_index (max_index: int) (curr_max: elt) (curr_index: int) (arr: elt array) = if curr_index = Array.length arr then (if curr_max = C.zero then None else Some (max_index+1)) (* Arrays are 0-indexed but matrices aren't *) else (match C.compare arr.(curr_index) C.zero with | Equal -> find_index max_index curr_max (curr_index+1) arr | Greater -> (let (el, index) = compare_helper (arr.(curr_index)) curr_max curr_index max_index in find_index index el (curr_index+1) arr) | Less -> (let abs_curr_elt = C.subtract C.zero arr.(curr_index) in let (el, index) = compare_helper abs_curr_elt curr_max curr_index max_index in find_index index el (curr_index+1) arr)) in find_index 0 C.zero (start_index -1) array1 (* Basic row operations *) (* Scales a row by sc *) let scale_row (m: matrix) (num: int) (sc: elt) : unit = let (_, row) = get_row m num in let new_row = Array.map (C.multiply sc) row in set_row m num new_row (* Swaps two rows of a matrix *) let swap_row (m: matrix) (r1: int) (r2: int) : unit = let (len1, row1) = get_row m r1 in let (len2, row2) = get_row m r2 in let _ = assert (len1 = len2) in let _ = set_row m r1 row2 in let _ = set_row m r2 row1 in () (* Subtracts a multiple of r2 from r1 *) let sub_mult (m: matrix) (r1: int) (r2: int) (sc: elt) : unit = let (len1, row1) = get_row m r1 in let (len2, row2) = get_row m r2 in let _ = assert (len1 = len2) in for i = 0 to len1 - 1 do (* Arrays are 0-indexed *) row1.(i) <- C.subtract row1.(i) (C.multiply sc row2.(i)) done; set_row m r1 row1 (*************** End Helper Functions for Row Reduce ***************) (* Returns the row reduced form of a matrix. Is not done in place, but creates * a new matrix *) let row_reduce (mat: matrix) : matrix = let[@tailcall] rec row_reduce_h (n_row: int) (n_col: int) (mat2: matrix) : unit = let ((num_row, _), _) = mat2 in if (n_col = num_row + 1) then () else let (_,col) = get_column mat2 n_col in match find_max_col_index col n_row with | None (* Column all 0s *) -> row_reduce_h n_row (n_col+1) mat2 | Some index -> begin swap_row mat2 index n_row; let pivot = get_elt mat2 (n_row, n_col) in scale_row mat2 (n_row) (C.divide C.one pivot); for i = 1 to num_row do if i <> n_row then sub_mult mat2 i n_row (get_elt mat2 (i,n_col)) done; row_reduce_h (n_row+1) (n_col+1) mat2 end in (* Copies the matrix *) let ((n,p),m) = mat in let (dim,mat_cp) = empty n p in for i = 0 to n - 1 do for j = 0 to p - 1 do mat_cp.(i).(j) <- m.(i).(j) done; done; let _ = row_reduce_h 1 1 (dim,mat_cp) in (dim,mat_cp) (*************** End Main Functions ***************) (*************** Optional module functions ***************) (* calculates the trace of a matrix *) let trace (((n,p),m): matrix) : elt = let rec build (elt: elt) (i: int) = if i > -1 then build (C.add m.(i).(i) elt) (i - 1) else elt in if n = p then build C.zero (n - 1) else raise ImproperDimensions (* calculates the transpose of a matrix and retuns a new one *) let transpose (((n,p),m): matrix) = let (dim,m') = empty p n in for i = 0 to n - 1 do for j = 0 to p - 1 do m'.(j).(i) <- m.(i).(j) done; done; assert(dim = (p,n)); ((p,n),m') (* Returns the inverse of a matrix. Uses a pretty simple algorithm *) let inverse (mat: matrix) : matrix = let ((n, p), _) = mat in if n = p then (* create augmented matrix *) let augmented = empty n (2*n) in for i = 1 to n do let (dim,col) = get_column mat i in let arr = Array.make n C.zero in begin assert(dim = n); arr.(i-1) <- C.one; set_column augmented i col; set_column augmented (n + i) arr end done; let augmented' = row_reduce augmented in (* create the inverted matrix and fill in with appropriate values *) let inverse = empty n n in for i = 1 to n do let (dim, col) = get_column augmented' (n + i) in let _ = assert(dim = n) in let _ = set_column inverse i col in () done; inverse else raise NonSquare (***************** HELPER FUNCTIONS FOR DETERMINANT *****************) (* creates an identity matrix of size n*) let create_identity (n:int) : matrix = let (dim,m) = empty n n in for i = 0 to n - 1 do m.(i).(i) <- C.one done; (dim,m) (* Finds the index of the maximum value of an array *) let find_max_index (arr: elt array) (start_index : int) : int = let rec find_index (max_index: int) (curr_index: int) = if curr_index = Array.length arr then max_index+1 else match C.compare arr.(curr_index) arr.(max_index) with | Equal | Less -> find_index max_index (curr_index + 1) | Greater -> find_index curr_index (curr_index + 1) in find_index (start_index - 1) start_index (* Creates the pivoting matrix for A. Returns swqps. Adapted from * http://rosettacode.org/wiki/LU_decomposition#Common_Lisp *) let pivotize (((n,p),m): matrix) : matrix * int = if n = p then let swaps = ref 0 in let pivot_mat = create_identity n in for j = 1 to n do let (_,col) = get_column ((n,p),m) j in let max_index = find_max_index col j in if max_index <> j then (swaps := !swaps + 1; swap_row pivot_mat max_index j) else () done; (pivot_mat,!swaps) else raise ImproperDimensions (* decomposes a matrix into a lower triangualar, upper triangualar * and a pivot matrix. It returns (L,U,P). Adapted from * http://rosettacode.org/wiki/LU_decomposition#Common_Lisp *) let lu_decomposition (((n,p),m): matrix) : (matrix*matrix*matrix)*int = if n = p then let mat = ((n,p),m) in let lower, upper, (pivot,s) = empty n n, empty n n, pivotize mat in let (_ ,l),(_ ,u), _ = lower,upper,pivot in let ((_, _),mat') = mult pivot mat in for j = 0 to n - 1 do l.(j).(j) <- C.one; for i = 0 to j do let sum = ref C.zero in for k = 0 to i - 1 do sum := C.add (!sum) (C.multiply u.(k).(j) l.(i).(k)) done; u.(i).(j) <- C.subtract mat'.(i).(j) (!sum) done; for i = j to n - 1 do let sum = ref C.zero in for k = 0 to j - 1 do sum := C.add (!sum) (C.multiply u.(k).(j) l.(i).(k)) done; let sub = C.subtract mat'.(i).(j) (!sum) in l.(i).(j) <- C.divide sub u.(j).(j) done; done; (lower,upper,pivot),s else raise ImproperDimensions (* Computes the determinant of a matrix *) let determinant (m: matrix) : elt = try let ((n,p), _) = m in if n = p then let rec triangualar_det (a,mat) curr_index acc = if curr_index < n then let acc' = C.multiply mat.(curr_index).(curr_index) acc in triangualar_det (a,mat) (curr_index + 1) acc' else acc in let ((dim1,l),(dim2,u), _),s = lu_decomposition m in let det1, det2 = triangualar_det (dim1,l) 0 C.one, triangualar_det (dim2,u) 0 C.one in if s mod 2 = 0 then C.multiply det1 det2 else C.subtract C.zero (C.multiply det1 det2) else raise ImproperDimensions with | _ -> C.zero (*************** Optional module functions ***************) end