(** This module provide a way to create new Id dynamically in the runtime, and some fonctions for comparing them. *) module Id : sig type 'a typeid (** The type created on-the-fly. *) val newtype : unit -> 'a typeid (** Create a new instance of a dynamic type *) type ('a, 'b) eq = Eq : ('a, 'a) eq val try_cast : 'a typeid -> 'b typeid -> ('a, 'b) eq option (** Compare two types using the Eq pattern *) end = struct type 'a witness = .. module type Witness = sig type t type _ witness += Id : t witness end type 'a typeid = (module Witness with type t = 'a) type ('a, 'b) eq = Eq : ('a, 'a) eq let try_cast : type a b. a typeid -> b typeid -> (a, b) eq option = fun x y -> let module X : Witness with type t = a = (val x) in let module Y : Witness with type t = b = (val y) in match X.Id with Y.Id -> Some Eq | _ -> None let newtype (type u) () = (* The extensible type need to be extended in a module, it is not possible to declare a type in a function. That’s why we need to pack a module here *) let module Witness = struct type t = u type _ witness += Id : t witness end in (module Witness : Witness with type t = u) end (** The the Id module, wrap a value in an existencial type with a witness associate with. *) type result = R : { value : 'a; witness : 'a Id.typeid } -> result let get : type a. a Id.typeid -> result -> a option = fun typeid (R { value; witness }) -> match Id.try_cast typeid witness with Some Eq -> Some value | None -> None type t = | E : { module_ : (module S.Analyzer with type Expression.t = 'a and type Expression.t' = 'b and type Instruction.t = 'c and type Instruction.t' = 'd and type Location.t = 'e); expr_witness : 'a Id.typeid; expr' : 'b Id.typeid; instr_witness : 'c Id.typeid; instr' : 'd Id.typeid; location_witness : 'e Id.typeid; } -> t let build : (module S.Analyzer with type Expression.t = _ and type Expression.t' = _ and type Instruction.t = _ and type Instruction.t' = _ and type Location.t = 'a) -> 'a Id.typeid * t = fun module_ -> let expr_witness = Id.newtype () and expr' = Id.newtype () and instr_witness = Id.newtype () and instr' = Id.newtype () and location_witness = Id.newtype () in let t = E { module_; expr_witness; expr'; instr_witness; instr'; location_witness } in (location_witness, t) let get_module : t -> (module S.Analyzer) = fun (E { module_; _ }) -> (module_ :> (module S.Analyzer)) module type App = sig val t : t array end open StdLabels module Helper = struct type 'a expr_list = { witness : 'a Id.typeid; values : 'a list } let expr_i : result array list -> 'a Id.typeid -> int -> 'a expr_list = fun args witness i -> let result = List.fold_left args ~init:{ values = []; witness } ~f:(fun (type a) ({ values; witness } : a expr_list) t : a expr_list -> match get witness (Array.get t i) with | None -> failwith "Does not match" | Some value_1 -> { values = value_1 :: values; witness }) in { result with values = result.values } end module Make (A : App) = struct let identifier = "main_checker" let description = "Internal module" (* Global variable for the whole module *) let len = Array.length A.t module Expression : S.Expression with type t' = result array = struct type t = result array type t' = result array let literal : S.pos -> t T.literal list -> t = fun pos values -> Array.mapi A.t ~f:(fun i (E { module_ = (module S); expr_witness; _ }) -> (* Map every values to the Checker *) let values' = List.map values ~f:(function | T.Text t -> T.Text t | T.Expression e -> let exprs = List.rev (Helper.expr_i e expr_witness i).values in T.Expression exprs) in let value = S.Expression.literal pos values' in R { value; witness = expr_witness }) let integer : S.pos -> string -> t = fun pos value -> Array.map A.t ~f:(fun (E { module_ = (module S); expr_witness; _ }) -> let value = S.Expression.integer pos value in R { value; witness = expr_witness }) (** Unary operator like [-123] or [+'Text']*) let uoperator : S.pos -> T.uoperator -> t -> t = fun pos op values -> (* Evaluate the nested expression *) let results = values in (* Now evaluate the remaining expression. Traverse both the module the apply, and the matching expression already evaluated. It’s easer to use [map] and declare [report] as reference instead of [fold_left2] and accumulate the report inside the closure, because I don’t manage the order of the results. *) let results = Array.map2 A.t results ~f:(fun (E { module_ = (module S); expr_witness; _ }) value -> match get expr_witness value with | None -> failwith "Does not match" | Some value -> (* Evaluate the single expression *) let value = S.Expression.uoperator pos op value in R { witness = expr_witness; value }) in results (** Basically the same as uoperator, but operate over two operands instead of a single one. *) let boperator : S.pos -> T.boperator -> t -> t -> t = fun pos op expr1 expr2 -> Array.init len ~f:(fun i -> let (E { module_ = (module S); expr_witness; _ }) = Array.get A.t i in match ( get expr_witness (Array.get expr1 i), get expr_witness (Array.get expr2 i) ) with | Some value_1, Some value_2 -> let value = S.Expression.boperator pos op value_1 value_2 in R { witness = expr_witness; value } | _ -> failwith "Does not match") (** Call a function. The functions list is hardcoded in lib/lexer.mll *) let function_ : S.pos -> T.function_ -> t list -> t = fun pos func args -> Array.init len ~f:(fun i -> let (E { module_ = (module S); expr_witness; _ }) = Array.get A.t i in (* Extract the arguments for each module *) let args_i = List.rev (Helper.expr_i args expr_witness i).values in let value = S.Expression.function_ pos func args_i in R { witness = expr_witness; value }) let ident : (S.pos, t) S.variable -> t = fun { pos : S.pos; name : string; index : t option } -> Array.init len ~f:(fun i -> let (E { module_ = (module S); expr_witness; _ }) = Array.get A.t i in match index with | None -> (* Easest case, just return the plain ident *) let value = S.Expression.ident { pos; name; index = None } in R { witness = expr_witness; value } | Some t -> ( match get expr_witness (Array.get t i) with | None -> failwith "Does not match" | Some value_1 -> let value = S.Expression.ident { pos; name; index = Some value_1 } in R { witness = expr_witness; value })) (** Convert each internal represention for the expression into its external representation *) let v : t -> t' = fun t -> let result = Array.map2 A.t t ~f:(fun (E { module_ = (module S); expr_witness; expr'; _ }) result -> match get expr_witness result with | None -> failwith "Does not match" | Some value -> let value = S.Expression.v value in R { witness = expr'; value }) in result end module Instruction : S.Instruction with type expression = Expression.t' and type t' = result array = struct type expression = Expression.t' type t = result array type t' = result array let location : S.pos -> string -> t = fun pos label -> Array.map A.t ~f:(fun (E { module_ = (module S); instr_witness; _ }) -> let value = S.Instruction.location pos label in R { value; witness = instr_witness }) let comment : S.pos -> t = fun pos -> Array.map A.t ~f:(fun (E { module_ = (module S); instr_witness; _ }) -> let value = S.Instruction.comment pos in R { value; witness = instr_witness }) let expression : expression -> t = fun expr -> Array.map2 A.t expr ~f:(fun (E { module_ = (module S); instr_witness; expr'; _ }) result -> match get expr' result with | None -> failwith "Does not match" | Some value -> (* The evaluate the instruction *) let value = S.Instruction.expression value in R { value; witness = instr_witness }) let call : S.pos -> T.keywords -> expression list -> t = fun pos keyword args -> (* The arguments are given like an array of array. Each expression is actually the list of each expression in the differents modules. *) Array.init len ~f:(fun i -> let (E { module_ = (module S); expr'; instr_witness; _ }) = Array.get A.t i in let values = List.rev (Helper.expr_i args expr' i).values in let value = S.Instruction.call pos keyword values in R { witness = instr_witness; value }) let act : S.pos -> label:expression -> t list -> t = fun pos ~label instructions -> Array.init len ~f:(fun i -> let (E { module_ = (module S); instr_witness; expr'; _ }) = Array.get A.t i in let values = List.rev (Helper.expr_i instructions instr_witness i).values in match get expr' (Array.get label i) with | None -> failwith "Does not match" | Some label_i -> let value = S.Instruction.act pos ~label:label_i values in R { witness = instr_witness; value }) (* I think it’s one of the longest module I’ve ever written in OCaml… *) let assign : S.pos -> (S.pos, expression) S.variable -> T.assignation_operator -> expression -> t = fun pos { pos = var_pos; name; index } op expression -> Array.init len ~f:(fun i -> let (E { module_ = (module A); instr_witness; expr'; _ }) = Array.get A.t i in let index_i = Option.map (fun expression -> match get expr' (Array.get expression i) with | None -> failwith "Does not match" | Some value -> value) index in let variable = S.{ pos = var_pos; name; index = index_i } in match get expr' (Array.get expression i) with | None -> failwith "Does not match" | Some value -> let value = A.Instruction.assign pos variable op value in R { value; witness = instr_witness }) (** Helper function used to prepare the clauses *) let map_clause : (expression, t) S.clause -> S.pos * Expression.t' * t list = fun clause -> let clause_pos, expression, t = clause in let expression = expression in let clause = (clause_pos, expression, t) in clause let rebuild_clause : type a b. int -> a Id.typeid -> b Id.typeid -> S.pos * result array * result array list -> (b, a) S.clause = fun i instr_witness expr' clause -> let pos_clause, expr_clause, ts = clause in match get expr' (Array.get expr_clause i) with | None -> failwith "Does not match" | Some value -> let ts = Helper.expr_i ts instr_witness i in let ts = List.rev ts.values in let clause = (pos_clause, value, ts) in clause let if_ : S.pos -> (expression, t) S.clause -> elifs:(expression, t) S.clause list -> else_:(S.pos * t list) option -> t = fun pos clause ~elifs ~else_ -> (* First, apply the report for all the instructions *) let clause = map_clause clause and elifs = List.map elifs ~f:map_clause in let else_ = match else_ with | None -> None | Some (pos, instructions) -> Some (pos, instructions) in Array.init len ~f:(fun i -> let (E { module_ = (module A); instr_witness; expr'; _ }) = Array.get A.t i in let clause = rebuild_clause i instr_witness expr' clause and elifs = List.map elifs ~f:(rebuild_clause i instr_witness expr') and else_ = match else_ with | None -> None | Some (pos, instructions) -> let elses = Helper.expr_i instructions instr_witness i in Some (pos, List.rev elses.values) in let value = A.Instruction.if_ pos clause ~elifs ~else_ in R { value; witness = instr_witness }) (** This code is almost a copy/paste from Expression.v but I did not found a way to factorize it. *) let v : t -> t' = fun t -> let result = Array.map2 A.t t ~f:(fun (E { module_ = (module S); instr_witness; instr'; _ }) result -> match get instr_witness result with | None -> failwith "Does not match" | Some value -> let value = S.Instruction.v value in R { witness = instr'; value }) in result end module Location : S.Location with type t = result array and type instruction = Instruction.t' = struct type instruction = Instruction.t' type t = result array let location : S.pos -> instruction list -> t = fun pos args -> ignore pos; let result = Array.init len ~f:(fun i -> let (E { module_ = (module A); instr'; location_witness; _ }) = Array.get A.t i in let instructions = List.rev (Helper.expr_i args instr' i).values in let value = A.Location.location pos instructions in R { value; witness = location_witness }) in result let v : t -> Report.t list = fun args -> let report = ref [] in let () = Array.iteri args ~f:(fun i result -> let (E { module_ = (module A); location_witness; _ }) = Array.get A.t i in match get location_witness result with | None -> failwith "Does not match" | Some value -> let re = A.Location.v value in report := List.rev_append re !report) in !report end end