(** Build a module with the result from another one module *) open StdLabels (** Build an expression module with the result from another expression. The signature of the fuctions is a bit different, as they all receive the result from the previous evaluated element in argument. *) module Expression (E : S.Expression) = struct module type SIG = sig type t type t' (* Override the type [t] in the definition of all the functions. The signatures differs a bit from the standard signature as they get the result from E.t in last argument *) val ident : (S.pos, E.t' * t) S.variable -> E.t' -> t val integer : S.pos -> string -> E.t' -> t val literal : S.pos -> (E.t' * t) T.literal list -> E.t' -> t val function_ : S.pos -> T.function_ -> (E.t' * t) list -> E.t' -> t val uoperator : S.pos -> T.uoperator -> E.t' * t -> E.t' -> t val boperator : S.pos -> T.boperator -> E.t' * t -> E.t' * t -> E.t' -> t val v : E.t' * t -> t' (** Convert from the internal representation to the external one. *) end module Make (M : SIG) : S.Expression with type t' = M.t' = struct type t = E.t * M.t type t' = M.t' let v : t -> t' = fun (type_of, v) -> M.v (E.v type_of, v) let ident : (S.pos, t) S.variable -> t = fun { pos; name : string; index : t option } -> let t' = E.ident { pos; name; index = Option.map fst index } in let index' = Option.map (fun (e, m) -> (E.v e, m)) index in (t', M.ident { pos; name; index = index' } (E.v @@ t')) let integer : S.pos -> string -> t = fun pos i -> let t' = E.integer pos i in (t', M.integer pos i (E.v t')) let literal : S.pos -> t T.literal list -> t = fun pos litts -> let e_litts = List.map litts ~f:(T.map_litteral ~f:fst) in let litts' = List.map litts ~f:(T.map_litteral ~f:(fun (e, m) -> (E.v e, m))) in let t' = E.literal pos e_litts in (t', M.literal pos litts' (E.v t')) let function_ : S.pos -> T.function_ -> t list -> t = fun pos f expressions -> let e = List.map ~f:fst expressions and expressions' = List.map ~f:(fun (e, m) -> (E.v e, m)) expressions in let t' = E.function_ pos f e in (t', M.function_ pos f expressions' (E.v t')) let uoperator : S.pos -> T.uoperator -> t -> t = fun pos op (t, expr) -> let t' = E.uoperator pos op t in (t', M.uoperator pos op (E.v t, expr) (E.v t')) let boperator : S.pos -> T.boperator -> t -> t -> t = fun pos op (t1, expr1) (t2, expr2) -> let t' = E.boperator pos op t1 t2 in (t', M.boperator pos op (E.v t1, expr1) (E.v t2, expr2) (E.v t')) end end