open StdLabels module Ast = struct type 'a variable = { pos : 'a; name : string; index : 'a expression option } [@@deriving eq, show] and 'a expression = | Integer of 'a * string | Literal of 'a * string | Ident of 'a variable | BinaryOp of 'a * T.boperator * 'a expression * 'a expression | Op of 'a * T.uoperator * 'a expression | Function of 'a * T.function_ * 'a expression list [@@deriving eq, show] and 'a condition = 'a * 'a expression * 'a statement list and 'a statement = | If of { loc : 'a; then_ : 'a condition; elifs : 'a condition list; else_ : 'a statement list; } | Act of { loc : 'a; label : 'a expression; statements : 'a statement list } | Declaration of ('a * 'a variable * T.assignation_operator * 'a expression) | Expression of 'a expression | Comment of 'a | Call of 'a * T.keywords * 'a expression list | Location of 'a * string [@@deriving eq, show] end (** Default implementation for the expression *) module Expression : S.Expression with type t' = S.pos Ast.expression = struct type t = S.pos Ast.expression type t' = t let v : t -> t' * Report.t list = fun t -> (t, []) let integer : S.pos -> string -> t = fun pos i -> Ast.Integer (pos, i) let literal : S.pos -> string -> t = fun pos l -> Ast.Literal (pos, l) let function_ : S.pos -> T.function_ -> t list -> t = fun pos name args -> Ast.Function (pos, name, args) let uoperator : S.pos -> T.uoperator -> t -> t = fun pos op expression -> Ast.Op (pos, op, expression) let boperator : S.pos -> T.boperator -> t -> t -> t = fun pos op op1 op2 -> let op1 = op1 and op2 = op2 in Ast.BinaryOp (pos, op, op1, op2) let ident : (S.pos, t) S.variable -> t = fun { pos; name; index } -> let index = Option.map (fun i -> i) index in Ast.Ident { pos; name; index } end module Instruction : S.Instruction with type expression = Expression.t' * Report.t list and type t' = S.pos Ast.statement = struct type t = S.pos Ast.statement type t' = t let v : t -> t' * Report.t list = fun t -> (t, []) type expression = Expression.t' * Report.t list let call : S.pos -> T.keywords -> expression list -> t S.repr = fun pos name args _ -> let args = List.map ~f:fst args in Ast.Call (pos, name, args) let location : S.pos -> string -> t S.repr = fun loc label _ -> Ast.Location (loc, label) let comment : S.pos -> t S.repr = fun pos _ -> Ast.Comment pos let expression : expression -> t S.repr = fun expr _ -> Ast.Expression (fst expr) let if_ : S.pos -> (expression, t) S.clause -> elifs:(expression, t) S.clause list -> else_:(S.pos * t S.repr list) option -> t S.repr = fun pos predicate ~elifs ~else_ _ -> let clause (pos, expr, repr) = let repr = List.map ~f:(fun instr -> instr []) repr in (pos, fst @@ expr, repr) in let elifs = List.map ~f:clause elifs and else_ = match else_ with | None -> [] | Some (_, instructions) -> List.map ~f:(fun instr -> instr []) instructions in Ast.If { loc = pos; then_ = clause predicate; elifs; else_ } let act : S.pos -> label:expression -> t S.repr list -> t S.repr = fun pos ~label statements _ -> let label = fst label and statements = List.map ~f:(fun instr -> instr []) statements in Ast.Act { loc = pos; label; statements } let assign : S.pos -> (S.pos, expression) S.variable -> T.assignation_operator -> expression -> t S.repr = fun pos_loc { pos; name; index } op expr _ -> (*let index = Option.map (fun i -> fst @@ Expression.observe (i [])) index*) let index = Option.map fst index in let expr = fst expr in Ast.Declaration (pos_loc, { pos; name; index }, op, expr) end module Location = struct type instruction = (Instruction.t' * Report.t list) S.repr type t = S.pos * S.pos Ast.statement list let location : S.pos -> instruction list -> (t * Report.t list) S.repr = fun pos block report -> let report, block = List.fold_left_map ~init:report block ~f:(fun report b -> let v, report = b report in (report, v)) in ((pos, block), report) end