diff options
Diffstat (limited to 'script.it/shapes/matrix')
-rwxr-xr-x | script.it/shapes/matrix/EltsI.ml | 28 | ||||
-rwxr-xr-x | script.it/shapes/matrix/Helpers.ml | 16 | ||||
-rwxr-xr-x | script.it/shapes/matrix/Matrix.ml | 529 | ||||
-rwxr-xr-x | script.it/shapes/matrix/MatrixI.ml | 105 | ||||
-rwxr-xr-x | script.it/shapes/matrix/Order.ml | 2 | ||||
-rwxr-xr-x | script.it/shapes/matrix/dune | 3 |
6 files changed, 683 insertions, 0 deletions
diff --git a/script.it/shapes/matrix/EltsI.ml b/script.it/shapes/matrix/EltsI.ml new file mode 100755 index 0000000..fcfdb50 --- /dev/null +++ b/script.it/shapes/matrix/EltsI.ml @@ -0,0 +1,28 @@ +module type ORDERED_AND_OPERATIONAL = +sig + + (* Exception for from_string. Is raised when from_string is passed something + * that is not an elt *) + exception NonElt + + type t + + (* The zero element *) + val zero : t + + (* The one element *) + val one: t + + (* ts must be comparable *) + val compare : t -> t -> Order.order + + (* Basic mathematical operations must be possible *) + val add: t -> t -> t + + val subtract: t -> t -> t + + val multiply: t -> t -> t + + val divide: t -> t -> t + +end diff --git a/script.it/shapes/matrix/Helpers.ml b/script.it/shapes/matrix/Helpers.ml new file mode 100755 index 0000000..6980052 --- /dev/null +++ b/script.it/shapes/matrix/Helpers.ml @@ -0,0 +1,16 @@ +(* Takes in a string and a separator, and separates the string into a list of + * substrings where each substring is between two separators or between a + * separator and the beginning/end of the string *) +let explode (s: string) (space: string) : string list = + let rec build (curr: string) (buffer: string) (lst: string list) : string list = + let len = String.length curr in + if len = 0 then buffer::lst + else + let c = String.sub curr (len - 1) 1 in + if len = 1 then (c ^ buffer)::lst + else + let s' = String.sub curr 0 (len - 1) in + if c = space then build s' "" (buffer::lst) + else build s' (c ^ buffer) lst in + build (String.trim s) "" [] + diff --git a/script.it/shapes/matrix/Matrix.ml b/script.it/shapes/matrix/Matrix.ml new file mode 100755 index 0000000..7f1d54b --- /dev/null +++ b/script.it/shapes/matrix/Matrix.ml @@ -0,0 +1,529 @@ +open Order + +module Order = Order + +(*************** Exceptions ***************) + +exception NonSquare +exception ImproperDimensions + +(* Functor so we can Abstract away! *) +module MakeMatrix (C: EltsI.ORDERED_AND_OPERATIONAL) : + (MatrixI.MATRIX with type elt = C.t) = +struct + + + (*************** End Exceptions ***************) + + (*************** Types ***************) + + type elt = C.t + + (* A matrix is a pair of dimension (n x p) and a array of arrays + * the first array is the row (n) and the second the column (p) *) + type matrix = (int * int) * (elt array array) + + (*************** End Types ***************) + + (*************** Base Functions ***************) + + (* catching negative dimensions AND 0 dimensions and too large + * of a dimension so we don't have to worry about it later *) + let empty (rows: int) (columns: int) : matrix = + if rows > 0 && columns > 0 then + try + let m = Array.make_matrix rows columns C.zero in ((rows,columns),m) + with _ -> + raise ImproperDimensions + else (* dimension is negative or 0 *) + raise ImproperDimensions + + (*************** End Base Functions ***************) + + (*************** Helper Functions ***************) + + (* get's the nth row of a matrix and returns (r, row) where r is the length + * of the row and row is a COPY of the original row. For example, calling + * calling get_row m 1 will return (3, |1 3 4 |) + * ________ + * m = | 1 3 4 | + * |*2 5 6 | + *) + (* aside: we don't check whether n < 1 because of our matrix invariant *) + let get_row (((n,p),m): matrix) (row: int) : int * elt array = + if row <= n then + let row' = Array.map (fun x -> x) m.(row - 1) in + (p, row') + else + raise (Failure "Row out of bounds.") + + (* similar to get_row. For m, get_column m 1 will return (2, |1 2|) *) + let get_column (((n,p),m): matrix) (column: int) : int * elt array = + if column <= p then + begin + let column' = Array.make n C.zero in + for i = 0 to n - 1 do + column'.(i) <- m.(i).(column - 1) + done; + (n, column') + end + else + raise (Failure "Column out of bounds.") + + (* sets the nth row of the matrix m to the specified array a. + * This is done IN-PLACE. Therefore the function returns unit. You should + * nonetheless enfore immutability whenever possible. For a clarification on + * what nth row means, look at comment for get_row above. *) + let set_row (((n, p), m): matrix) (row: int) (a: elt array) : unit = + if row <= n then + begin + assert(Array.length a = p); + for i = 0 to p - 1 do + m.(row - 1).(i) <- a.(i) + done; + end + else + raise (Failure "Row out of bounds.") + + (* Similar to set_row but sets the nth column instead *) + let set_column (((n,p),m): matrix) (column: int) (a: elt array) : unit = + if column <= p then + begin + assert(Array.length a = n); + for i = 0 to n - 1 do + m.(i).(column - 1) <- a.(i) + done; + end + else + raise (Failure "Column out of bounds.") + + (* returns the ij-th element of a matrix (not-zero indexed) *) + let get_elt (((n,p),m): matrix) ((i,j): int*int) : elt = + if i <= n && j <= p then + m.(i - 1).(j - 1) + else + raise ImproperDimensions + + (* Changes the i,j-th element of a matrix to e. Is not zero-indexed, and + * changes the matrix in place *) + let set_elt (((n,p),m): matrix) ((i,j): int*int) (e: elt) : unit = + if i <= n && j <= p then + m.(i - 1).(j - 1) <- e + else + raise ImproperDimensions + + (* similar to map, but applies to function to the entire matrix + * Returns a new matrix *) + let map (f: elt -> elt) (mat: matrix) : matrix = + let (dim,m) = mat in + (dim, Array.map (Array.map f) m) + + (* Just some wrapping of Array.iter made for Matrices! *) + let iter (f: elt -> unit) (mat: matrix) : unit = + let _, m = mat in + Array.iter (Array.iter f) m + + (* Just some wrapping of Array.iteri. Useful for pretty + * printing matrix. The index is (i,j). NOT zero-indexed *) + let iteri (f: int -> int -> elt -> unit) (mat: matrix) : unit = + let _, m = mat in + Array.iteri (fun i row -> Array.iteri (fun j e -> f i j e) row) m + + (* folds over each row using base case u and function f *) + (* could be a bit more efficient? *) + let reduce (f: 'a -> elt -> 'a) (u: 'a) (((p,q),m): matrix) : 'a = + let total = ref u in + for i = 0 to p - 1 do + for j = 0 to q - 1 do + total := f (!total) m.(i).(j) + done; + done; + !total + + let fold_row ~(f: elt array -> 'b) ((_,m): matrix) : 'b list = + + let call_row acc v = (f v)::acc in + Array.fold_left call_row [] m + |> List.rev + + + + + (* given two arrays, this will calculate their dot product *) + (* It seems a little funky, but this is done for efficiency's sake. + * In short, it tries to multiply each element by it's respective + * element until the one array is indexed out of bounds. If the + * other array is also out of bounds, then it returns their value. + * Otherwise, the arrays were the wrong size and raises ImproperDimension + + THE ABOVE COMMENT HAS NOT BEEN IMPLEMENTED + + Instead we calculate the length before starting + *) + let dot (v1: elt array) (v2: elt array) : elt = + let rec dotting (i: int) (total: elt) : elt = + if i = 0 then total + else + let curr = C.multiply v1.(i-1) v2.(i-1) in + dotting (i - 1) (C.add curr total) in + let len1, len2 = Array.length v1, Array.length v2 in + if len1 = len2 then dotting len1 C.zero + else raise ImproperDimensions + + (* function to expose the dimensions of a matrix *) + let get_dimensions (m: matrix) : (int * int) = + let ((x,y), _) = m in (x,y) + + (*************** End Helper Functions ***************) + + + (*************** Primary Matrix Functions ***************) + + (* scales a matrix by the appropriate factor *) + let scale (m: matrix) (sc: elt) : matrix = map (C.multiply sc) m + + (* Generates a matrix from a list of lists. The inners lists are the rows *) + let from_list (lsts : elt list list) : matrix = + let check_length (length: int) (lst: elt list) : int = + if List.length lst = length then length + else raise ImproperDimensions in + let p = List.length lsts in + match lsts with + | [] -> raise ImproperDimensions + | hd::tl -> + let len = List.length hd in + if List.fold_left check_length len tl = len then + ((p,len),Array.map Array.of_list (Array.of_list lsts)) + else + raise ImproperDimensions + + (* Generates a matrix from a list of lists. The inners lists are the rows *) + let from_array (arrs : elt array array) : matrix = + let check_length (length: int) (arr: elt array) : unit = + if Array.length arr = length then () + else raise ImproperDimensions in + let p = Array.length arrs in + match Array.length arrs with + | 0 -> raise ImproperDimensions + | _ -> + let len = Array.length (Array.get arrs 0) in + Array.iter (check_length len) arrs; + ((p, len), arrs) + + (* Adds two matrices. They must have the same dimensions *) + let add ((dim1,m1): matrix) ((dim2,m2): matrix) : matrix = + if dim1 = dim2 then + let n, p = dim1 in + let (dim', sum_m) = empty n p in + for i = 0 to n - 1 do + for j = 0 to p - 1 do + sum_m.(i).(j) <- C.add m1.(i).(j) m2.(i).(j) + done; + done; + (dim',sum_m) + else + raise ImproperDimensions + + + (* Multiplies two matrices. If the matrices have dimensions m x n and p x q, n + * and p must be equal, and the resulting matrix will have dimension n x q *) + let mult (matrix1: matrix) (matrix2: matrix) : matrix = + let ((m,n), _), ((p,q), _) = matrix1, matrix2 in + if n = p then + let (dim, result) = empty m q in + for i = 0 to m - 1 do + for j = 0 to q - 1 do + let (_,row), (_,column) = get_row matrix1 (i + 1), + get_column matrix2 (j + 1) in + result.(i).(j) <- dot row column + done; + done; + (dim,result) + else + raise ImproperDimensions + + (*************** Helper Functions for Row Reduce ***************) + + (* + (* returns the index of the first non-zero elt in an array*) + let zero (arr: elt array) : int option = + let index = ref 1 in + let empty (i: int option) (e: elt) : int option = + match i, C.compare e C.zero with + | None, Equal -> (index := !index + 1; None) + | None, _ -> Some (!index) + | _, _ -> i in + Array.fold_left empty None arr + + (* returns the the location of the nth non-zero + * element in the matrix. Scans column wise. So the nth non-zero element is + * the FIRST non-zero element in the nth non-zero column *) + let nth_nz_location (m: matrix) (_: int): (int*int) option = + let ((n,p), _) = m in + let rec check_col (to_skip: int) (j: int) = + if j <= p then + let (_,col) = get_column m j in + match zero col with + | None -> check_col to_skip (j + 1) + | Some i -> + if to_skip = 0 then + Some (i,j) + else (* we want a later column *) + check_col (to_skip - 1) (j + 1) + else None in + check_col (n - 1) 1 + + (* returns the the location of the first + * non-zero and non-one elt. Scans column wise, from + * left to right. Basically, it ignores columns + * that are all zero or that *) + let fst_nz_no_loc (m: matrix): (int*int) option = + let ((_, p), _) = m in + let rec check_col (j: int) = + if j <= p then + let (_,col) = get_column m j in + match zero col with + | None -> check_col (j + 1) + | Some i -> + match C.compare col.(i-1) C.one with + | Equal -> check_col (j + 1) + | _ -> Some (i,j) + else None in + check_col 1 + *) + + (* Compares two elements in an elt array and returns the greater and its + * index. Is a helper function for find_max_col_index *) + let compare_helper (e1: elt) (e2: elt) (ind1: int) (ind2: int) : (elt*int) = + match C.compare e1 e2 with + | Equal -> (e2, ind2) + | Greater -> (e1, ind1) + | Less -> (e2, ind2) + + (* Finds the element with the greatest absolute value in a column. Is not + * 0-indexed. If two elements are both the maximum value, returns the one with + * the lowest index. Returns None if this element is zero (if column is all 0) + *) + let find_max_col_index (array1: elt array) (start_index: int) : int option = + let rec find_index (max_index: int) (curr_max: elt) (curr_index: int) + (arr: elt array) = + if curr_index = Array.length arr then + (if curr_max = C.zero then None + else Some (max_index+1)) (* Arrays are 0-indexed but matrices aren't *) + else + (match C.compare arr.(curr_index) C.zero with + | Equal -> find_index max_index curr_max (curr_index+1) arr + | Greater -> + (let (el, index) = compare_helper (arr.(curr_index)) + curr_max curr_index max_index in + find_index index el (curr_index+1) arr) + | Less -> + (let abs_curr_elt = C.subtract C.zero arr.(curr_index) in + let (el, index) = compare_helper abs_curr_elt curr_max curr_index + max_index in + find_index index el (curr_index+1) arr)) + in + find_index 0 C.zero (start_index -1) array1 + + (* Basic row operations *) + (* Scales a row by sc *) + let scale_row (m: matrix) (num: int) (sc: elt) : unit = + let (_, row) = get_row m num in + let new_row = Array.map (C.multiply sc) row in + set_row m num new_row + + (* Swaps two rows of a matrix *) + let swap_row (m: matrix) (r1: int) (r2: int) : unit = + let (len1, row1) = get_row m r1 in + let (len2, row2) = get_row m r2 in + let _ = assert (len1 = len2) in + let _ = set_row m r1 row2 in + let _ = set_row m r2 row1 in + () + + (* Subtracts a multiple of r2 from r1 *) + let sub_mult (m: matrix) (r1: int) (r2: int) (sc: elt) : unit = + let (len1, row1) = get_row m r1 in + let (len2, row2) = get_row m r2 in + let _ = assert (len1 = len2) in + for i = 0 to len1 - 1 do (* Arrays are 0-indexed *) + row1.(i) <- C.subtract row1.(i) (C.multiply sc row2.(i)) + done; + set_row m r1 row1 + + (*************** End Helper Functions for Row Reduce ***************) + + (* Returns the row reduced form of a matrix. Is not done in place, but creates + * a new matrix *) + let row_reduce (mat: matrix) : matrix = + let[@tailcall] rec row_reduce_h (n_row: int) (n_col: int) (mat2: matrix) : unit = + let ((num_row, _), _) = mat2 in + if (n_col = num_row + 1) then () + else + let (_,col) = get_column mat2 n_col in + match find_max_col_index col n_row with + | None (* Column all 0s *) -> row_reduce_h n_row (n_col+1) mat2 + | Some index -> + begin + swap_row mat2 index n_row; + let pivot = get_elt mat2 (n_row, n_col) in + scale_row mat2 (n_row) (C.divide C.one pivot); + for i = 1 to num_row do + if i <> n_row then sub_mult mat2 i n_row (get_elt mat2 (i,n_col)) + done; + row_reduce_h (n_row+1) (n_col+1) mat2 + end + in + (* Copies the matrix *) + let ((n,p),m) = mat in + let (dim,mat_cp) = empty n p in + for i = 0 to n - 1 do + for j = 0 to p - 1 do + mat_cp.(i).(j) <- m.(i).(j) + done; + done; + let _ = row_reduce_h 1 1 (dim,mat_cp) in (dim,mat_cp) + + (*************** End Main Functions ***************) + + (*************** Optional module functions ***************) + + (* calculates the trace of a matrix *) + let trace (((n,p),m): matrix) : elt = + let rec build (elt: elt) (i: int) = + if i > -1 then + build (C.add m.(i).(i) elt) (i - 1) + else + elt in + if n = p then build C.zero (n - 1) + else raise ImproperDimensions + + (* calculates the transpose of a matrix and retuns a new one *) + let transpose (((n,p),m): matrix) = + let (dim,m') = empty p n in + for i = 0 to n - 1 do + for j = 0 to p - 1 do + m'.(j).(i) <- m.(i).(j) + done; + done; + assert(dim = (p,n)); + ((p,n),m') + + (* Returns the inverse of a matrix. Uses a pretty simple algorithm *) + let inverse (mat: matrix) : matrix = + let ((n, p), _) = mat in + if n = p then + (* create augmented matrix *) + let augmented = empty n (2*n) in + for i = 1 to n do + let (dim,col) = get_column mat i in + let arr = Array.make n C.zero in + begin + assert(dim = n); + arr.(i-1) <- C.one; + set_column augmented i col; + set_column augmented (n + i) arr + end + done; + let augmented' = row_reduce augmented in + (* create the inverted matrix and fill in with appropriate values *) + let inverse = empty n n in + for i = 1 to n do + let (dim, col) = get_column augmented' (n + i) in + let _ = assert(dim = n) in + let _ = set_column inverse i col in + () + done; + inverse + else + raise NonSquare + + (***************** HELPER FUNCTIONS FOR DETERMINANT *****************) + (* creates an identity matrix of size n*) + let create_identity (n:int) : matrix = + let (dim,m) = empty n n in + for i = 0 to n - 1 do + m.(i).(i) <- C.one + done; + (dim,m) + + (* Finds the index of the maximum value of an array *) + let find_max_index (arr: elt array) (start_index : int) : int = + let rec find_index (max_index: int) (curr_index: int) = + if curr_index = Array.length arr then max_index+1 + else + match C.compare arr.(curr_index) arr.(max_index) with + | Equal | Less -> find_index max_index (curr_index + 1) + | Greater -> find_index curr_index (curr_index + 1) in + find_index (start_index - 1) start_index + + (* Creates the pivoting matrix for A. Returns swqps. Adapted from + * http://rosettacode.org/wiki/LU_decomposition#Common_Lisp *) + let pivotize (((n,p),m): matrix) : matrix * int = + if n = p then + let swaps = ref 0 in + let pivot_mat = create_identity n in + for j = 1 to n do + let (_,col) = get_column ((n,p),m) j in + let max_index = find_max_index col j in + if max_index <> j then + (swaps := !swaps + 1; swap_row pivot_mat max_index j) + else () + done; + (pivot_mat,!swaps) + else raise ImproperDimensions + + (* decomposes a matrix into a lower triangualar, upper triangualar + * and a pivot matrix. It returns (L,U,P). Adapted from + * http://rosettacode.org/wiki/LU_decomposition#Common_Lisp *) + let lu_decomposition (((n,p),m): matrix) : (matrix*matrix*matrix)*int = + if n = p then + let mat = ((n,p),m) in + let lower, upper, (pivot,s) = empty n n, empty n n, pivotize mat in + let (_ ,l),(_ ,u), _ = lower,upper,pivot in + let ((_, _),mat') = mult pivot mat in + for j = 0 to n - 1 do + l.(j).(j) <- C.one; + for i = 0 to j do + let sum = ref C.zero in + for k = 0 to i - 1 do + sum := C.add (!sum) (C.multiply u.(k).(j) l.(i).(k)) + done; + u.(i).(j) <- C.subtract mat'.(i).(j) (!sum) + done; + for i = j to n - 1 do + let sum = ref C.zero in + for k = 0 to j - 1 do + sum := C.add (!sum) (C.multiply u.(k).(j) l.(i).(k)) + done; + let sub = C.subtract mat'.(i).(j) (!sum) in + l.(i).(j) <- C.divide sub u.(j).(j) + done; + done; + (lower,upper,pivot),s + else raise ImproperDimensions + + (* Computes the determinant of a matrix *) + let determinant (m: matrix) : elt = + try + let ((n,p), _) = m in + if n = p then + let rec triangualar_det (a,mat) curr_index acc = + if curr_index < n then + let acc' = C.multiply mat.(curr_index).(curr_index) acc in + triangualar_det (a,mat) (curr_index + 1) acc' + else acc in + let ((dim1,l),(dim2,u), _),s = lu_decomposition m in + let det1, det2 = triangualar_det (dim1,l) 0 C.one, + triangualar_det (dim2,u) 0 C.one in + if s mod 2 = 0 then C.multiply det1 det2 + else C.subtract C.zero (C.multiply det1 det2) + else raise ImproperDimensions + with + | _ -> C.zero + + + (*************** Optional module functions ***************) + + +end diff --git a/script.it/shapes/matrix/MatrixI.ml b/script.it/shapes/matrix/MatrixI.ml new file mode 100755 index 0000000..fbc4e21 --- /dev/null +++ b/script.it/shapes/matrix/MatrixI.ml @@ -0,0 +1,105 @@ +exception NonSquare +exception ImproperDimensions + +module type MATRIX = +sig + + (******** TYPES ********) + type elt + + type matrix + + (* empty matrix of nxp dimensions *) + val empty : int -> int -> matrix + + (* Takes a list of lists and converts that to a matrix *) + val from_list : (elt list list) -> matrix + + val from_array: elt array array -> matrix + + (******** OPERATIONS ON ONE MATRIX ********) + (* Takes in a matrix and returns its dimensions. ie, nxp *) + val get_dimensions : matrix -> (int * int) + + (* get's the row of a matrix: Not zero-indexed. *) + val get_row : matrix -> int -> (int * elt array) + + (* similar to get_row *) + val get_column: matrix -> int -> (int * elt array) + + (* sets the row of a matrix in place! Not zero-index *) + val set_row: matrix -> int -> elt array -> unit + + (* similar to set_row, but for a column *) + val set_column: matrix -> int -> elt array -> unit + + (* gets the element at the specified index. *) + val get_elt: matrix -> (int * int) -> elt + + (* sets the element at the specified index *) + val set_elt: matrix -> (int * int) -> elt -> unit + + (* Scales every element in the matrix by another elt *) + val scale : matrix -> elt -> matrix + + + (******** MORE ADVANCED SINGLE MATRIX OPERATIONS ********) + (* Returns the row reduced form of a matrix *) + val row_reduce: matrix -> matrix + (* We will implement the algorithm found in the link above *) + + (* Returns the inverse of a matrix *) + val inverse: matrix -> matrix + + (*Transposes a matrix. If the input has dimensions m x n, the output will + * have dimensions n x m *) + val transpose: matrix -> matrix + + (* Returns the trace of the matrix *) + val trace: matrix -> elt + + (******** OPERATIONS ON TWO MATRICES ********) + (* Adds two matrices. They must have the same dimensions *) + val add : matrix -> matrix -> matrix + + (* Multiplies two matrices. If the matrices have dimensions m x n and p x q, n + * and p must be equal, and the resulting matrix will have dimension m x q *) + val mult: matrix -> matrix -> matrix + + (**** Other Library Functions ***) + (* Function to make over our matrices *) + val map : (elt -> elt) -> matrix -> matrix + + (*val iter : (elt -> unit) -> matrix -> unit*) + + (* Returns the LUP decomposition of a matrix *) + val lu_decomposition : matrix -> (matrix * matrix * matrix) * int + + (* Returns the determinant of the matrix *) + val determinant: matrix -> elt + + (************** Other Library Functions *************) + val iter : (elt -> unit) -> matrix -> unit + + val iteri : (int -> int -> elt -> unit) -> matrix -> unit + + (* folds over each row using base case u and function f *) + val reduce: ('a -> elt -> 'a) -> 'a -> matrix -> 'a + + val fold_row: f:(elt array -> 'b) -> matrix -> 'b list + + (********** Specific for Simplex Algorithm ***********) + (** All of the following functions will raise ImproperDimensions + * Exception if the matrix is not the right size for the operation + **) + + (* Scales a row *) + val scale_row: matrix -> int -> elt -> unit + + (* Swaps two rows *) + val swap_row: matrix -> int -> int -> unit + + (* Subtracts a multiple of one row (the 2nd int) from another (the 1st int) *) + val sub_mult: matrix -> int -> int -> elt -> unit + +end diff --git a/script.it/shapes/matrix/Order.ml b/script.it/shapes/matrix/Order.ml new file mode 100755 index 0000000..5f2aa22 --- /dev/null +++ b/script.it/shapes/matrix/Order.ml @@ -0,0 +1,2 @@ +(* Defines a general ordering type *) +type order = Equal | Less | Greater diff --git a/script.it/shapes/matrix/dune b/script.it/shapes/matrix/dune new file mode 100755 index 0000000..1c0cab6 --- /dev/null +++ b/script.it/shapes/matrix/dune @@ -0,0 +1,3 @@ +(library + (name matrix) +) |