1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
open StdLabels
(** This module provide a way to create new Id dynamically in the runtime,
and some fonctions for comparing them. *)
module Id : sig
type 'a typeid
(** The type created on-the-fly. *)
val newtype : unit -> 'a typeid
(** Create a new instance of a dynamic type *)
type ('a, 'b) eq = Eq : ('a, 'a) eq
val try_cast : 'a typeid -> 'b typeid -> ('a, 'b) eq option
(** Compare two types using the Eq pattern *)
end = struct
type 'a witness = ..
module type Witness = sig
type t
type _ witness += Id : t witness
end
type 'a typeid = (module Witness with type t = 'a)
type ('a, 'b) eq = Eq : ('a, 'a) eq
let try_cast : type a b. a typeid -> b typeid -> (a, b) eq option =
fun x y ->
let module X : Witness with type t = a = (val x) in
let module Y : Witness with type t = b = (val y) in
match X.Id with Y.Id -> Some Eq | _ -> None
let newtype (type u) () =
(* The extensible type need to be extended in a module, it is not possible
to declare a type in a function. That’s why we need to pack a module
here *)
let module Witness = struct
type t = u
type _ witness += Id : t witness
end in
(module Witness : Witness with type t = u)
end
(** The the Id module, wrap a value in an existencial type with a witness
associate with. *)
type result = R : { value : 'a; witness : 'a Id.typeid } -> result
type transform =
| E : {
module_ :
(module S.Analyzer
with type Expression.t = 'a
and type Instruction.t = 'b
and type Location.t = 'c);
expr_witness : 'a Id.typeid;
instr_witness : 'b Id.typeid;
location_witness : 'c Id.typeid;
}
-> transform
module type App = sig
val t : transform array
end
module Helper = struct
type 'a args_list = { witness : 'a Id.typeid; values : 'a S.repr list }
(** This types helps the compiler to know which kind of arguments are hold
inside the list. This is just a list with the additionnal witnesse
information *)
(** Extract all the lines from the given module
**Beware** The values are reversed. You should apply a List.rev if you
want to keep them in the same order than the modules to apply.
*)
let args_i : result array list -> 'a Id.typeid -> int -> 'a args_list =
fun args witness i ->
let result =
List.fold_left args ~init:{ values = []; witness }
~f:(fun (type a) ({ values; witness } : a args_list) t : a args_list ->
let (R { value = value_1; witness = witness_1 }) = Array.get t i in
match Id.try_cast witness witness_1 with
| None -> failwith "Does not match"
| Some Eq -> { values = (fun r -> (value_1, r)) :: values; witness })
in
{ result with values = result.values }
let map_args report args =
List.fold_left_map args ~init:report ~f:(fun report v ->
let v, result = v report in
(result, v))
end
module Make (A : App) = struct
module Expression : S.Expression with type t' = result array = struct
type t = result array
type t' = result array
let literal : S.pos -> string -> t S.repr =
fun pos value report ->
let report, values =
Array.fold_left_map A.t ~init:report
~f:(fun report (E { module_ = (module S); expr_witness; _ }) ->
let value, report = S.Expression.literal pos value report in
(report, R { value; witness = expr_witness }))
in
(values, report)
let integer : S.pos -> string -> t S.repr =
fun pos value report ->
let report, values =
Array.fold_left_map A.t ~init:report
~f:(fun report (E { module_ = (module S); expr_witness; _ }) ->
let value, report = S.Expression.integer pos value report in
(report, R { value; witness = expr_witness }))
in
(values, report)
(** Unary operator like [-123] or [+'Text']*)
let uoperator : S.pos -> T.uoperator -> t S.repr -> t S.repr =
fun pos op values report ->
(* Evaluate the nested expression *)
let results, report = values report in
(* Now evaluate the remaining expression.
Traverse both the module the apply, and the matching expression already
evaluated.
It’s easer to use [map] and declare [report] as reference instead of
[fold_left2] and accumulate the report inside the closure, because I
don’t manage the order of the results.
*)
let report = ref report in
let results =
Array.map2 A.t results
~f:(fun
(E { module_ = (module S); expr_witness; _ })
(R { value; witness })
->
match Id.try_cast witness expr_witness with
| None -> failwith "Does not match"
| Some Eq ->
(* Evaluate the single expression *)
let value, report' =
S.Expression.uoperator pos op (fun r -> (value, r)) !report
in
report := report';
R { witness = expr_witness; value })
in
(results, !report)
(** Basically the same as uoperator, but operate over two operands instead
of a single one.
In order to operate over the values (application, op1, op2) I’ve
written a function [take_arg] which works like a [Array.map3] *)
let boperator : S.pos -> T.boperator -> t S.repr -> t S.repr -> t S.repr =
fun pos op expr1 expr2 report ->
let expr1, report = expr1 report in
let expr2, report = expr2 report in
let report = ref report in
let take_arg : result array -> result array -> result array =
fun expr1 expr2 ->
let len = Array.length A.t in
Array.init len ~f:(fun i ->
let (E { module_ = (module S); expr_witness; _ }) =
Array.get A.t i
in
let (R { value = value_1; witness }) = Array.get expr1 i in
match Id.try_cast expr_witness witness with
| None -> failwith "Does not match"
| Some Eq -> (
let (R { value = value_2; witness }) = Array.get expr2 i in
match Id.try_cast expr_witness witness with
| None -> failwith "Does not match"
| Some Eq ->
let value, r =
S.Expression.boperator pos op
(fun r -> (value_1, r))
(fun r -> (value_2, r))
!report
in
report := r;
R { witness = expr_witness; value }))
in
let results = take_arg expr1 expr2 in
(results, !report)
(** Call a function. The functions list is hardcoded in lib/lexer.mll *)
let function_ : S.pos -> T.function_ -> t S.repr list -> t S.repr =
fun pos func args report ->
let report, args = Helper.map_args report args in
let report = ref report and len = Array.length A.t in
let result =
Array.init len ~f:(fun i ->
let (E { module_ = (module S); expr_witness; _ }) =
Array.get A.t i
in
(* Extract the arguments for each module *)
let args_i = Helper.args_i args expr_witness i in
let value, r =
S.Expression.function_ pos func (List.rev args_i.values) !report
in
report := r;
R { witness = expr_witness; value })
in
(result, !report)
let ident : (S.pos, t S.repr) S.variable -> t S.repr =
fun { pos : S.pos; name : string; index : t S.repr option } report ->
let len = Array.length A.t in
let report = ref report in
let index =
Option.map
(fun v ->
let v, r = v !report in
report := r;
v)
index
in
let result =
Array.init len ~f:(fun i ->
let (E { module_ = (module S); expr_witness; _ }) =
Array.get A.t i
in
match index with
| None ->
(* Easest case, just return the plain ident *)
let value, r =
S.Expression.ident { pos; name; index = None } !report
in
report := r;
R { witness = expr_witness; value }
| Some t -> (
let (R { value = value_1; witness }) = Array.get t i in
match Id.try_cast expr_witness witness with
| None -> failwith "Does not match"
| Some Eq ->
let value, r =
S.Expression.ident
{ pos; name; index = Some (fun r -> (value_1, r)) }
!report
in
report := r;
R { witness = expr_witness; value }))
in
(result, !report)
let v : t * Report.t list -> t' * Report.t list = fun t -> t
end
module Instruction :
S.Instruction
with type expression = Expression.t' S.repr
and type t' = result array = struct
type expression = Expression.t' S.repr
type t = result array
type t' = result array
let location : S.pos -> string -> t S.repr =
fun pos label report ->
let report, values =
Array.fold_left_map A.t ~init:report
~f:(fun report (E { module_ = (module S); instr_witness; _ }) ->
let value, report = S.Instruction.location pos label report in
(report, R { value; witness = instr_witness }))
in
(values, report)
let comment : S.pos -> t S.repr =
fun pos report ->
let report, values =
Array.fold_left_map A.t ~init:report
~f:(fun report (E { module_ = (module S); instr_witness; _ }) ->
let value, report = S.Instruction.comment pos report in
(report, R { value; witness = instr_witness }))
in
(values, report)
let expression : expression -> t S.repr =
fun expr report ->
let expr, report = expr report in
let report = ref report in
let results =
Array.map2 A.t expr
~f:(fun
(E { module_ = (module S); instr_witness; expr_witness; _ })
(R { value; witness })
->
match Id.try_cast witness expr_witness with
| None -> failwith "Does not match"
| Some Eq ->
(* The evaluate the instruction *)
let value, r =
S.Instruction.expression
(fun r -> S.Expression.v (value, r))
!report
in
report := r;
R { value; witness = instr_witness })
in
(results, !report)
let call : S.pos -> T.keywords -> expression list -> t S.repr =
fun pos keyword args report ->
let report, args = Helper.map_args report args in
let report = ref report and len = Array.length A.t in
let result =
Array.init len ~f:(fun i ->
let (E { module_ = (module S); expr_witness; instr_witness; _ }) =
Array.get A.t i
in
let args_i = Helper.args_i args expr_witness i in
let values =
List.rev_map args_i.values ~f:(fun value r ->
S.Expression.v (value r))
in
let value, r = S.Instruction.call pos keyword values !report in
report := r;
R { witness = instr_witness; value })
in
(result, !report)
let act : S.pos -> label:expression -> t S.repr list -> t S.repr =
fun pos ~label instructions report ->
let label, report = label report in
let report, instructions = Helper.map_args report instructions in
let report = ref report and len = Array.length A.t in
let result =
Array.init len ~f:(fun i ->
let (E { module_ = (module S); instr_witness; expr_witness; _ }) =
Array.get A.t i
in
let args_i = Helper.args_i instructions instr_witness i in
let values =
List.rev_map args_i.values ~f:(fun value r -> value r)
in
let (R { value = label_i; witness }) = Array.get label i in
match Id.try_cast witness expr_witness with
| None -> failwith "Does not match"
| Some Eq ->
let label_i r = S.Expression.v (label_i, r) in
let value, r =
S.Instruction.act pos ~label:label_i values !report
in
report := r;
R { witness = instr_witness; value })
in
(result, !report)
(* I think it’s one of the longest module I’ve ever written in OCaml… *)
let assign :
S.pos ->
(S.pos, expression) S.variable ->
T.assignation_operator ->
expression ->
t S.repr =
fun pos { pos = var_pos; name; index } op expression report ->
let expression, report = expression report in
let report = ref report and len = Array.length A.t in
let index =
Option.map
(fun v ->
let v, r = v !report in
report := r;
v)
index
in
let result =
Array.init len ~f:(fun i ->
let (E { module_ = (module A); instr_witness; expr_witness; _ }) =
Array.get A.t i
in
let index_i =
Option.map
(fun expression ->
let (R { value; witness }) = Array.get expression i in
match Id.try_cast witness expr_witness with
| None -> failwith "Does not match"
| Some Eq ->
let value r = A.Expression.v (value, r) in
value)
index
in
let variable = S.{ pos = var_pos; name; index = index_i } in
let (R { value; witness }) = Array.get expression i in
match Id.try_cast witness expr_witness with
| None -> failwith "Does not match"
| Some Eq ->
let value, r =
A.Instruction.assign pos variable op
(fun r -> A.Expression.v (value, r))
!report
in
report := r;
R { value; witness = instr_witness })
in
(result, !report)
(** Helper function used to prepare the clauses *)
let map_clause :
Report.t list ->
(expression, t) S.clause ->
Report.t list * (S.pos * Expression.t' * t list) =
fun report clause ->
let clause_pos, expression, t = clause in
let expression, report = expression report in
let report, t =
List.fold_left_map t ~init:report ~f:(fun report t ->
let t, report = t report in
(report, t))
in
let clause = (clause_pos, expression, t) in
(report, clause)
let rebuild_clause :
type a b.
int ->
a Id.typeid ->
b Id.typeid ->
(b -> 'c) ->
S.pos * result array * result array list ->
('c, a) S.clause =
fun i instr_witness expr_witness f clause ->
let pos_clause, expr_clause, ts = clause in
let (R { value; witness }) = Array.get expr_clause i in
match Id.try_cast witness expr_witness with
| None -> failwith "Does not match"
| Some Eq ->
let ts = Helper.args_i ts instr_witness i in
let ts = List.rev_map ts.values ~f:(fun value r -> value r) in
let clause = (pos_clause, f value, ts) in
clause
let if_ :
S.pos ->
(expression, t) S.clause ->
elifs:(expression, t) S.clause list ->
else_:t S.repr list ->
t S.repr =
fun pos clause ~elifs ~else_ report ->
(* First, apply the report for all the instructions *)
let report, clause = map_clause report clause in
let report, elifs = List.fold_left_map elifs ~init:report ~f:map_clause in
let report, else_ = Helper.map_args report else_ in
let report = ref report and len = Array.length A.t in
let result =
Array.init len ~f:(fun i ->
let (E { module_ = (module A); instr_witness; expr_witness; _ }) =
Array.get A.t i
in
(* This function helps to build the expression in the clauses *)
let f v r = A.Expression.v (v, r) in
let clause = rebuild_clause i instr_witness expr_witness f clause
and elifs =
List.map elifs ~f:(rebuild_clause i instr_witness expr_witness f)
and elses = Helper.args_i else_ instr_witness i in
let else_ = List.rev elses.values in
let value, r = A.Instruction.if_ pos clause ~elifs ~else_ !report in
report := r;
R { value; witness = instr_witness })
in
(result, !report)
let v : t * Report.t list -> t' * Report.t list = fun t -> t
end
module Location :
S.Location with type t = result array and type instruction = Instruction.t' =
struct
type instruction = Instruction.t'
type t = result array
let location : S.pos -> instruction S.repr list -> t S.repr =
fun pos instructions report ->
ignore pos;
let report, instructions = Helper.map_args report instructions in
let report = ref report and len = Array.length A.t in
let result =
Array.init len ~f:(fun i ->
let (E { module_ = (module A); instr_witness; location_witness; _ })
=
Array.get A.t i
in
let instructions_i : A.Instruction.t Helper.args_list =
Helper.args_i instructions instr_witness i
in
let inst : A.Instruction.t S.repr list = instructions_i.values in
let instructions : A.Instruction.t' S.repr list =
List.rev_map inst ~f:(fun value report ->
let value, report = value report in
A.Instruction.v (value, report))
in
let value, re = A.Location.location pos instructions !report in
report := re;
R { value; witness = location_witness })
in
(result, !report)
end
end
|