aboutsummaryrefslogtreecommitdiff
path: root/evaluator.ml
blob: 12d60b816e35e766710d2fe27450d7c909da8832 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
module D = DataType
module T = Tools

module Data = struct

(** Data format *)

type 'a dataFormat = 'a ScTypes.dataFormat

(*** Type definitions *)

type _ typ =
  | Unit: unit typ
  | Bool: D.Bool.t typ
  | Num: D.Num.t typ
  | String: UTF8.t typ
  | List: 'a typ -> 'a list typ

let typ_of_format: type a. a ScTypes.dataFormat -> a typ = function
  | ScTypes.Date -> Num
  | ScTypes.Number -> Num
  | ScTypes.String -> String
  | ScTypes.Bool -> Bool

let rec compare_typ: type a b. a typ -> b typ -> (a, b) T.cmp =
begin fun a b ->
  match a, b with
  | Unit, Unit     -> T.Eq
  | Bool, Bool     -> T.Eq
  | Num, Num       -> T.Eq
  | String, String -> T.Eq
  | List l1, List l2 ->
      begin match compare_typ l1 l2 with
      | T.Lt -> T.Lt
      | T.Eq -> T.Eq
      | T.Gt -> T.Gt
      end
  | x, y -> if (T.Ex x) > (T.Ex y) then T.Gt else T.Lt
end

let rec repr:
type a. Format.formatter -> a typ -> unit =
fun printer typ -> match typ with
  | Unit ->   Format.fprintf printer "Unit"
  | Bool ->   Format.fprintf printer "Bool"
  | Num  ->   Format.fprintf printer "Num"
  | String -> Format.fprintf printer "String"
  | List t -> Format.fprintf printer "List[%a]"
                repr t

type 'a returnType = 'a ScTypes.returnType

(*** Values definitions *)

type 'a value =
  | Bool: D.Bool.t -> D.Bool.t value
  | Num: D.Num.t ScTypes.dataFormat * D.Num.t -> D.Num.t value
  | String: UTF8.t -> UTF8.t value
  | List: 'a ScTypes.dataFormat * 'a list -> 'a list value
  | Matrix: 'a ScTypes.dataFormat * 'a list list -> 'a list list value

(** Get the value out of the box *)
let get_value_content: type a. a value -> a = function
  | Bool b -> b
  | Num (_, n) -> n
  | String s -> s
  | List (t, l) -> l
  | Matrix (t, l) -> l

(* Extract the type from a boxed value *)
let type_of_value: type a. a value -> a typ = function
  | Bool b -> Bool
  | Num (n, _) -> Num
  | String s -> String
  | List (t, l) -> List (typ_of_format t)
  | Matrix (t, l) -> List (List (typ_of_format t))

end

module C = Catalog.Make(Data)


type t = C.t

let catalog = C.empty

let repr = C.repr

type existencialResult =
  | Result : 'a Data.value -> existencialResult [@@unboxed]

let inject:
type a. a Data.dataFormat -> a -> existencialResult = fun resultFormat res ->
  begin match resultFormat with
  | ScTypes.Bool -> Result (Data.Bool res)
  | ScTypes.String -> Result (Data.String res)
  | ScTypes.Number -> Result (Data.Num (resultFormat, res))
  | ScTypes.Date -> Result (Data.Num (resultFormat, res))
  end


(** Extract the format from a list of results *)
let build_format_list ll () =

  List.map (fun (Result x) ->
    begin match x with
      | Data.Bool _ -> ScTypes.DataFormat.F (ScTypes.Bool)
      | Data.Num (x, _) -> ScTypes.DataFormat.F x
      | Data.String _ -> ScTypes.DataFormat.F (ScTypes.String)
      | Data.List (f, _) -> ScTypes.DataFormat.F f
      | Data.Matrix (f, _) -> ScTypes.DataFormat.F f
    end
  ) ll


let register0 name returnType f =
  catalog := C.register !catalog name (C.T1(Data.Unit)) (C.Fn1 (returnType, f))

let register1 name typ1 returnType f =
  catalog := C.register !catalog name (C.T1(typ1)) (C.Fn1 (returnType, f))

let register2 name (typ1, typ2) result f =
  catalog := C.register !catalog name (C.T2(typ1, typ2)) (C.Fn2 (result, f))

let register3 name (typ1, typ2, typ3) result f =
  catalog := C.register !catalog name (C.T3(typ1, typ2, typ3)) (C.Fn3 (result, f))

let call name args = begin
  let name' = UTF8.to_utf8string name in
  begin try match args with
  | [] ->
    let C.Fn1(ret, f) = C.find_function !catalog name' (C.T1 Data.Unit) in
    let returnType = ScTypes.DataFormat.guess_format_result ret (fun () -> raise Errors.TypeError) in
    inject returnType (f ())

  | (Result p1)::[] ->
    let C.Fn1(ret, f) =
      C.find_function !catalog name' (C.T1 (Data.type_of_value p1)) in
    let returnType = ScTypes.DataFormat.guess_format_result ret (build_format_list args) in
    inject returnType (f (Data.get_value_content p1))

  | (Result p1)::(Result p2)::[] ->
    let C.Fn2(ret, f) =
      C.find_function !catalog name' (C.T2 (Data.type_of_value p1, Data.type_of_value p2)) in
    let returnType = ScTypes.DataFormat.guess_format_result ret (build_format_list args) in
    inject returnType (f (Data.get_value_content p1) (Data.get_value_content p2))

  | (Result p1)::(Result p2)::(Result p3)::[] ->
    let C.Fn3(ret, f) =
      C.find_function !catalog name' (C.T3 (Data.type_of_value p1, Data.type_of_value p2, Data.type_of_value p3)) in
    let returnType = ScTypes.DataFormat.guess_format_result ret (build_format_list args) in
    inject returnType (f (Data.get_value_content p1) (Data.get_value_content p2) (Data.get_value_content p3))

  | _ -> raise Not_found
  with Not_found ->
      let signature = List.map (fun (Result x) ->
        let formatter = Format.str_formatter in
        Data.repr formatter (Data.type_of_value x);
        Format.flush_str_formatter ()) args in

      raise (Errors.Undefined (name, signature))
  end
end

let eval mapper value = begin

  (** Extract the value from a raw type.
      If the value is Undefined, raise an exception.
   *)
  let extract_value : ScTypes.result -> existencialResult = begin function
    | ScTypes.Result (ScTypes.Num (f, n)) -> Result (Data.Num (f, n))
    | ScTypes.Result (ScTypes.Bool b)    -> Result (Data.Bool b)
    | ScTypes.Result (ScTypes.Str s)     -> Result (Data.String s)
    | ScTypes.Error x -> raise x
  end in

  (** Extract the value from an expression.
      [extract typ expr] will evaluate the expression and return it. If the
      result cannot be evaluated (because of references pointing to missing
      values) a default value of type [typ] will be returned.
   *)
  let rec extract = begin function
    (* For a reference to an external we first extract the value pointed  *)
    | ScTypes.Ref r -> ScTypes.Refs.(
        begin match ScTypes.Refs.get_content @@ mapper r with
        | C (Value (format, f)) -> begin match format with
            | ScTypes.Date -> Result (Data.Num (format, f))
            | ScTypes.Number -> Result (Data.Num (format, f))
            | ScTypes.String -> Result (Data.String f)
            | ScTypes.Bool -> Result (Data.Bool f)
            end
        | C (List (format, l)) -> Result (Data.List (format, l))
        | C (Matrix (format, l)) -> Result (Data.Matrix (format, l))
        end)

    (* Evaluate the expression *)
    | ScTypes.Expression e -> extract e
    | ScTypes.Value v -> extract_value (ScTypes.Result v)
    | ScTypes.Call (name, args) ->
      let args' = List.map extract args in
        call name args'
    end
  in
  let Result r = ((extract[@tailrec]) value) in
  begin match r with
  | Data.Bool b ->  ScTypes.Result (ScTypes.boolean b)
  | Data.String s -> ScTypes.Result (ScTypes.string s)
  | Data.Num (format, n)  -> begin match ScTypes.get_numeric_type format with
      | ScTypes.Date -> ScTypes.Result (ScTypes.date n)
      | ScTypes.Number -> ScTypes.Result (ScTypes.number n)
    end
  | _ -> raise Errors.TypeError
  end
end

let wrap f =
  let old_catalog = !catalog in
  Tools.try_finally
    (fun () -> catalog := C.empty; f ())
    (fun () -> catalog := old_catalog)


(* Register the standard functions *)
type 'a returnType = 'a ScTypes.returnType

let f_num = ScTypes.f_num
let f_date = ScTypes.f_date
let f_number = ScTypes.f_number
let f_string = ScTypes.f_string
let f_bool = ScTypes.f_bool

module Make_Compare(C: D.COMPARABLE) = struct

  let register t = begin
    register2 "="  (t, t) f_bool C.eq;
    register2 "<>" (t, t) f_bool C.neq;
    register2 ">"  (t, t) f_bool C.gt;
    register2 ">=" (t, t) f_bool C.ge;
    register2 "<"  (t, t) f_bool C.lt;
    register2 "<=" (t, t) f_bool C.le;
  end

end

type 'a typ = 'a Data.typ
let t_bool: DataType.Bool.t typ = Data.Bool
let t_int:  DataType.Num.t  typ = Data.Num
let t_string: UTF8.t typ = Data.String
let t_list (t: 'a typ): 'a list typ = Data.List t

(* Helper for list functions : reduce over a list of elements *)
let reduce name typ res f = begin
  register1 name (t_list typ) res (fun x ->
    List.fold_left f (List.hd x) x);
  register1 name (t_list (t_list typ)) res (fun x ->
    List.fold_left (List.fold_left f) (List.hd (List.hd x)) x);
end

(* Helper for list functions : fold over a list of elements *)
let fold name t_in t_out f init = begin
  register1 name (t_list t_in) t_out (fun x ->
    List.fold_left f init x);
  register1 name (t_list (t_list t_in)) t_out (fun x ->
    List.fold_left (List.fold_left f) init x);
end

let if_: type a. bool -> a -> a -> a = fun a b c -> if a then b else c


let () = begin

  (* Build a date *)
  register3 "date"  (t_int, t_int, t_int) f_date (
    fun year month day ->
      D.Date.get_julian_day
        (D.Num.to_int year)
        (D.Num.to_int month)
        (D.Num.to_int day)
  );

  let module CompareNum = Make_Compare(D.Num) in
  Data.(
  CompareNum.register t_int;
  register0 "rand"              f_number  D.Num.rnd;

  register0 "pi"                f_number (fun () -> D.Num.of_float (4. *. atan 1.));
  register1 "sin"  t_int        f_number (fun x  -> D.Num.of_float (sin  @@ D.Num.to_float x));
  register1 "cos"  t_int        f_number (fun x  -> D.Num.of_float (cos  @@ D.Num.to_float x));
  register1 "tan"  t_int        f_number (fun x  -> D.Num.of_float (tan  @@ D.Num.to_float x));
  register1 "atan" t_int        f_number (fun x  -> D.Num.of_float (atan @@ D.Num.to_float x));
  register1 "asin" t_int        f_number (fun x  -> D.Num.of_float (asin @@ D.Num.to_float x));
  register1 "acos" t_int        f_number (fun x  -> D.Num.of_float (acos @@ D.Num.to_float x));
  register1 "sinh" t_int        f_number (fun x  -> D.Num.of_float (sinh @@ D.Num.to_float x));
  register1 "cosh" t_int        f_number (fun x  -> D.Num.of_float (cosh @@ D.Num.to_float x));
  register1 "tanh" t_int        f_number (fun x  -> D.Num.of_float (tanh @@ D.Num.to_float x));
  register2 "atan2" (t_int, t_int)f_number (fun x y ->
    D.Num.of_float (atan2 (D.Num.to_float x) (D.Num.to_float y))
  );

  register1 "sqrt" t_int        f_number (fun x  -> D.Num.of_float (sqrt @@ D.Num.to_float x));
  register1 "exp"  t_int        f_number (fun x  -> D.Num.of_float (exp @@ D.Num.to_float x));
  register1 "ln"   t_int        f_number (fun x  -> D.Num.of_float (log @@ D.Num.to_float x));

  register3 "if" (t_bool, t_int, t_int) f_number if_;
  register3 "if" (t_bool, t_bool, t_bool) f_bool if_;
  register3 "if" (t_bool, t_string, t_string) f_string if_;

  register1 "abs" t_int         f_number  D.Num.abs;
  register1 "int" t_int         f_number  D.Num.floor;
  register1 "rounddown" t_int   f_number  D.Num.round_down;
  register1 "round" t_int       f_number  D.Num.round;


  let module CompareBool = Make_Compare(D.Bool) in
  CompareBool.register t_bool;
  register0 "true"                    f_bool (fun () -> D.Bool.true_);
  register0 "false"                   f_bool (fun () -> D.Bool.false_);
  register1 "not"   t_bool            f_bool D.Bool.not;
  register2 "and"   (t_bool, t_bool)  f_bool D.Bool.and_;
(*  fold      "and"    t_bool           f_bool D.Bool.and_  (D.Bool.true_); *)
  register2 "or"    (t_bool, t_bool)  f_bool D.Bool.or_;
(*  fold      "or"     t_bool           f_bool D.Bool.or_   (D.Bool.false_); *)
  register2 "xor"   (t_bool, t_bool)  f_bool D.Bool.neq;
(*  fold      "xor"    t_bool           f_bool D.Bool.neq   (D.Bool.false_); *)

  let module CompareString = Make_Compare(D.String) in
  CompareString.register t_string;

  reduce "min" t_int f_num D.Num.min; (* Minimum value from a list *)
  reduce "max" t_int f_num D.Num.max; (* Maximum value from a list *)

  fold "sum"     t_int f_number D.Num.add  (D.Num.zero);
  fold "product" t_int f_number D.Num.mult (D.Num.one);

  register2 "^"     (t_int, t_int) f_number  D.Num.pow;
  register2 "power" (t_int, t_int) f_number  D.Num.pow;

  register2 "gcd"(t_int, t_int) f_number  D.Num.gcd;
  register2 "lcm"(t_int, t_int) f_number  D.Num.lcm;
  register1 "+"  t_int          f_num     (fun x -> x);
  register1 "-"  t_int          f_num     D.Num.neg;    (* Unary negation *)
  register2 "+"  (t_int, t_int) f_num     D.Num.add;
  register2 "-"  (t_int, t_int) f_num     D.Num.sub;
  register2 "*"  (t_int, t_int) f_number  D.Num.mult;
  register2 "/"  (t_int, t_int) f_number  D.Num.div;

  )

end