aboutsummaryrefslogtreecommitdiff
path: root/src/functions.ml
blob: 0258ce08a8d7209dd11d3c6c4f745a9d1141d10f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
(*
This file is part of licht.

licht is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

licht is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with licht.  If not, see <http://www.gnu.org/licenses/>.
*)

module D = DataType
module T = Tools

type _ typ =
  | Unit: unit typ
  | Bool: D.Bool.t typ
  | Num: D.Num.t typ
  | String: UTF8.t typ
  | List: 'a typ -> 'a list typ

let t_unit = Unit
let t_bool: DataType.Bool.t typ = Bool
let t_int:  DataType.Num.t  typ = Num
let t_string: UTF8.t typ = String
let t_list (t: 'a typ): 'a list typ = List t

let typ_of_format: type a. a ScTypes.DataFormat.t -> a typ = function
  | ScTypes.DataFormat.Date -> Num
  | ScTypes.DataFormat.Number -> Num
  | ScTypes.DataFormat.String -> String
  | ScTypes.DataFormat.Bool -> Bool


let rec repr:
type a. Format.formatter -> a typ -> unit =
fun printer typ -> match typ with
  | Unit ->   Format.fprintf printer "Unit"
  | Bool ->   Format.fprintf printer "Bool"
  | Num  ->   Format.fprintf printer "Num"
  | String -> Format.fprintf printer "String"
  | List t -> Format.fprintf printer "List[%a]"
      (repr[@tailcall]) t

module C = Catalog.Make(struct

  let repr = repr

  let rec compare_typ: type a b. a typ -> b typ -> (a, b) T.cmp =
  begin fun a b ->
    match a, b with
    | Unit, Unit     -> T.Eq
    | Bool, Bool     -> T.Eq
    | Num, Num       -> T.Eq
    | String, String -> T.Eq
    | List l1, List l2 ->
        begin match compare_typ l1 l2 with
        | T.Lt -> T.Lt
        | T.Eq -> T.Eq
        | T.Gt -> T.Gt
        end
    | x, y -> if (T.Ex x) > (T.Ex y) then T.Gt else T.Lt
  end

  type 'a t = 'a typ

  type 'a returnType = 'a ScTypes.ReturnType.t


end)

let f_num = ScTypes.ReturnType.f_num
let f_date = ScTypes.ReturnType.f_date
let f_number = ScTypes.ReturnType.f_number
let f_string = ScTypes.ReturnType.f_string
let f_bool = ScTypes.ReturnType.f_bool

module Make_Compare(Comp: D.COMPARABLE) = struct

  let register t catalog  = begin catalog
    |> C.register2 "="  (t, t) f_bool Comp.eq
    |> C.register2 "<>" (t, t) f_bool Comp.neq
    |> C.register2 ">"  (t, t) f_bool Comp.gt
    |> C.register2 ">=" (t, t) f_bool Comp.ge
    |> C.register2 "<"  (t, t) f_bool Comp.lt
    |> C.register2 "<=" (t, t) f_bool Comp.le
  end

end

let built_in catalog = begin

  let module CompareNum = Make_Compare(D.Num) in
  let module CompareString = Make_Compare(D.String) in
  let module CompareBool = Make_Compare(D.Bool) in

  (* Helper for list functions : reduce over a list of elements *)
  let reduce name typ res f c = begin
    C.register1 name (t_list typ) res (fun x ->
      List.fold_left f (List.hd x) x) c
  |> C.register1 name (t_list (t_list typ)) res (fun x ->
      List.fold_left (List.fold_left f) (List.hd (List.hd x)) x);
  end in

  (* Helper for list functions : fold over a list of elements *)
  let fold name t_in t_out f init c = begin
    C.register1 name (t_list t_in) t_out (fun x ->
      List.fold_left f init x) c
  |> C.register1 name (t_list (t_list t_in)) t_out (fun x ->
      List.fold_left (List.fold_left f) init x)
  end in


  let if_: type a. bool -> a -> a -> a = fun a b c -> if a then b else c in

  (* Build a date *)
  C.register3 "date"  (t_int, t_int, t_int) f_date (
    fun year month day ->
      D.Date.get_julian_day
        (D.Num.to_int year)
        (D.Num.to_int month)
        (D.Num.to_int day)
  ) catalog
  |> CompareNum.register t_int

  |> C.register1 "rand" t_unit       f_number  D.Num.rnd

  |> C.register1 "pi"   t_unit       f_number (fun () -> D.Num.of_float (4. *. atan 1.))
  |> C.register1 "sin"  t_int        f_number (fun x  -> D.Num.of_float (sin  (D.Num.to_float x)))
  |> C.register1 "cos"  t_int        f_number (fun x  -> D.Num.of_float (cos  (D.Num.to_float x)))
  |> C.register1 "tan"  t_int        f_number (fun x  -> D.Num.of_float (tan  (D.Num.to_float x)))
  |> C.register1 "atan" t_int        f_number (fun x  -> D.Num.of_float (atan (D.Num.to_float x)))
  |> C.register1 "asin" t_int        f_number (fun x  -> D.Num.of_float (asin (D.Num.to_float x)))
  |> C.register1 "acos" t_int        f_number (fun x  -> D.Num.of_float (acos (D.Num.to_float x)))
  |> C.register1 "sinh" t_int        f_number (fun x  -> D.Num.of_float (sinh (D.Num.to_float x)))
  |> C.register1 "cosh" t_int        f_number (fun x  -> D.Num.of_float (cosh (D.Num.to_float x)))
  |> C.register1 "tanh" t_int        f_number (fun x  -> D.Num.of_float (tanh (D.Num.to_float x)))
  |> C.register2 "atan2" (t_int, t_int)f_number (fun x y ->
    D.Num.of_float (atan2 (D.Num.to_float x) (D.Num.to_float y))
  )

  |> C.register1 "sqrt" t_int        f_number (fun x  -> D.Num.of_float (sqrt(D.Num.to_float x)))
  |> C.register1 "exp"  t_int        f_number (fun x  -> D.Num.of_float (exp (D.Num.to_float x)))
  |> C.register1 "ln"   t_int        f_number (fun x  -> D.Num.of_float (log (D.Num.to_float x)))

  |> C.register3 "if" (t_bool, t_int, t_int) f_number if_
  |> C.register3 "if" (t_bool, t_bool, t_bool) f_bool if_
  |> C.register3 "if" (t_bool, t_string, t_string) f_string if_

  |> C.register1 "abs"   t_int       f_number  D.Num.abs
  |> C.register1 "int"   t_int       f_number  D.Num.floor
  |> C.register1 "rounddown" t_int   f_number  D.Num.round_down
  |> C.register1 "round" t_int       f_number  D.Num.round

  |> C.register1 "trim"  t_string    f_string  UTF8.trim
  |> C.register1 "right" t_string    f_string  (fun x -> UTF8.get x (-1))
  |> C.register2 "right" (t_string, t_int) f_string (
    fun t n ->
      let n' = D.Num.to_int n in
      UTF8.sub t (-(n')) n'
  )
  |> C.register1 "left"  t_string    f_string  (fun x -> UTF8.get x 0)
  |> C.register2 "left"  (t_string, t_int) f_string (
    fun t n ->
      let n' = D.Num.to_int n in
      UTF8.sub t 0 n'
  )
  |> C.register1 "len"   t_string    f_number  (fun x -> D.Num.of_int (UTF8.length x))
  |> C.register1 "lenb"  t_string    f_number  (fun x -> D.Num.of_int (String.length (UTF8.to_utf8string x)))
  |> C.register1 "lower" t_string    f_string  UTF8.lower
  |> C.register1 "unicode" t_string  f_number (fun x -> D.Num.of_int (UTF8.code x))
  |> C.register1 "unichar" t_int     f_string (fun x -> UTF8.char (D.Num.to_int x))
  |> C.register1 "upper" t_string    f_string  UTF8.upper
  |> C.register3 "substitute" (t_string, t_string, t_string)  f_string  UTF8.replace
  |> C.register2 "rept"  (t_string, t_int) f_string (fun t n -> UTF8.repeat (D.Num.to_int n) t)

  |> CompareBool.register t_bool
  |> C.register1 "true"  t_unit            f_bool (fun () -> D.Bool.true_)
  |> C.register1 "false" t_unit            f_bool (fun () -> D.Bool.false_)
  |> C.register1 "not"   t_bool            f_bool D.Bool.not
  |> C.register2 "and"   (t_bool, t_bool)  f_bool D.Bool.and_
  |> C.register2 "or"    (t_bool, t_bool)  f_bool D.Bool.or_
  |> C.register2 "xor"   (t_bool, t_bool)  f_bool D.Bool.neq

  |> CompareString.register t_string

  |> reduce "min" t_int f_num D.Num.min (* Minimum value from a list *)
  |> reduce "max" t_int f_num D.Num.max (* Maximum value from a list *)

  |> fold "sum"     t_int f_number D.Num.add  (D.Num.zero)
  |> fold "product" t_int f_number D.Num.mult (D.Num.one)

  |> C.register2 "^"     (t_int, t_int) f_number  D.Num.pow
  |> C.register2 "power" (t_int, t_int) f_number  D.Num.pow

  |> C.register2 "gcd"(t_int, t_int) f_number  D.Num.gcd
  |> C.register2 "lcm"(t_int, t_int) f_number  D.Num.lcm
  |> C.register1 "+"  t_int          f_num     (fun x -> x)
  |> C.register1 "-"  t_int          f_num     D.Num.neg    (* Unary negation *)
  |> C.register2 "+"  (t_int, t_int) f_num     D.Num.add
  |> C.register2 "-"  (t_int, t_int) f_num     D.Num.sub
  |> C.register2 "*"  (t_int, t_int) f_number  D.Num.mult
  |> C.register2 "/"  (t_int, t_int) f_number  D.Num.div

end