1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
(** This module provide a way to create new Id dynamically in the runtime,
and some fonctions for comparing them. *)
module Id : sig
type 'a typeid
(** The type created on-the-fly. *)
val newtype : unit -> 'a typeid
(** Create a new instance of a dynamic type *)
type ('a, 'b) eq = Eq : ('a, 'a) eq
val try_cast : 'a typeid -> 'b typeid -> ('a, 'b) eq option
(** Compare two types using the Eq pattern *)
end = struct
type 'a witness = ..
module type Witness = sig
type t
type _ witness += Id : t witness
end
type 'a typeid = (module Witness with type t = 'a)
type ('a, 'b) eq = Eq : ('a, 'a) eq
let try_cast : type a b. a typeid -> b typeid -> (a, b) eq option =
fun x y ->
let module X : Witness with type t = a = (val x) in
let module Y : Witness with type t = b = (val y) in
match X.Id with Y.Id -> Some Eq | _ -> None
let newtype (type u) () =
(* The extensible type need to be extended in a module, it is not possible
to declare a type in a function. That’s why we need to pack a module
here *)
let module Witness = struct
type t = u
type _ witness += Id : t witness
end in
(module Witness : Witness with type t = u)
end
(** The the Id module, wrap a value in an existencial type with a witness
associate with. *)
type result = R : { value : 'a; witness : 'a Id.typeid } -> result
let get : type a. a Id.typeid -> result -> a option =
fun typeid (R { value; witness }) ->
match Id.try_cast typeid witness with Some Eq -> Some value | None -> None
type t =
| E : {
module_ :
(module S.Analyzer
with type Expression.t = 'a
and type Expression.t' = 'b
and type Instruction.t = 'c
and type Instruction.t' = 'd
and type Location.t = 'e);
expr_witness : 'a Id.typeid;
expr' : 'b Id.typeid;
instr_witness : 'c Id.typeid;
instr' : 'd Id.typeid;
location_witness : 'e Id.typeid;
}
-> t
let build :
(module S.Analyzer
with type Expression.t = _
and type Expression.t' = _
and type Instruction.t = _
and type Instruction.t' = _
and type Location.t = 'a) ->
'a Id.typeid * t =
fun module_ ->
let expr_witness = Id.newtype ()
and expr' = Id.newtype ()
and instr_witness = Id.newtype ()
and instr' = Id.newtype ()
and location_witness = Id.newtype () in
let t =
E { module_; expr_witness; expr'; instr_witness; instr'; location_witness }
in
(location_witness, t)
let get_module : t -> (module S.Analyzer) =
fun (E { module_; _ }) -> (module_ :> (module S.Analyzer))
module type App = sig
val t : t array
end
open StdLabels
module Helper = struct
type 'a expr_list = { witness : 'a Id.typeid; values : 'a list }
let expr_i : result array list -> 'a Id.typeid -> int -> 'a expr_list =
fun args witness i ->
let result =
List.fold_left args ~init:{ values = []; witness }
~f:(fun (type a) ({ values; witness } : a expr_list) t : a expr_list ->
match get witness (Array.get t i) with
| None -> failwith "Does not match"
| Some value_1 -> { values = value_1 :: values; witness })
in
{ result with values = result.values }
end
module Make (A : App) = struct
let identifier = "main_checker"
let description = "Internal module"
(* Global variable for the whole module *)
let len = Array.length A.t
module Expression : S.Expression with type t' = result array = struct
type t = result array
type t' = result array
let literal : S.pos -> t T.literal list -> t =
fun pos values ->
Array.mapi A.t ~f:(fun i (E { module_ = (module S); expr_witness; _ }) ->
(* Map every values to the Checker *)
let values' =
List.map values ~f:(function
| T.Text t -> T.Text t
| T.Expression e ->
let exprs =
List.rev (Helper.expr_i e expr_witness i).values
in
T.Expression exprs)
in
let value = S.Expression.literal pos values' in
R { value; witness = expr_witness })
let integer : S.pos -> string -> t =
fun pos value ->
Array.map A.t ~f:(fun (E { module_ = (module S); expr_witness; _ }) ->
let value = S.Expression.integer pos value in
R { value; witness = expr_witness })
(** Unary operator like [-123] or [+'Text']*)
let uoperator : S.pos -> T.uoperator -> t -> t =
fun pos op values ->
(* Evaluate the nested expression *)
let results = values in
(* Now evaluate the remaining expression.
Traverse both the module the apply, and the matching expression already
evaluated.
It’s easer to use [map] and declare [report] as reference instead of
[fold_left2] and accumulate the report inside the closure, because I
don’t manage the order of the results.
*)
let results =
Array.map2 A.t results
~f:(fun (E { module_ = (module S); expr_witness; _ }) value ->
match get expr_witness value with
| None -> failwith "Does not match"
| Some value ->
(* Evaluate the single expression *)
let value = S.Expression.uoperator pos op value in
R { witness = expr_witness; value })
in
results
(** Basically the same as uoperator, but operate over two operands instead
of a single one. *)
let boperator : S.pos -> T.boperator -> t -> t -> t =
fun pos op expr1 expr2 ->
Array.init len ~f:(fun i ->
let (E { module_ = (module S); expr_witness; _ }) = Array.get A.t i in
match
( get expr_witness (Array.get expr1 i),
get expr_witness (Array.get expr2 i) )
with
| Some value_1, Some value_2 ->
let value = S.Expression.boperator pos op value_1 value_2 in
R { witness = expr_witness; value }
| _ -> failwith "Does not match")
(** Call a function. The functions list is hardcoded in lib/lexer.mll *)
let function_ : S.pos -> T.function_ -> t list -> t =
fun pos func args ->
Array.init len ~f:(fun i ->
let (E { module_ = (module S); expr_witness; _ }) = Array.get A.t i in
(* Extract the arguments for each module *)
let args_i = List.rev (Helper.expr_i args expr_witness i).values in
let value = S.Expression.function_ pos func args_i in
R { witness = expr_witness; value })
let ident : (S.pos, t) S.variable -> t =
fun { pos : S.pos; name : string; index : t option } ->
Array.init len ~f:(fun i ->
let (E { module_ = (module S); expr_witness; _ }) = Array.get A.t i in
match index with
| None ->
(* Easest case, just return the plain ident *)
let value = S.Expression.ident { pos; name; index = None } in
R { witness = expr_witness; value }
| Some t -> (
match get expr_witness (Array.get t i) with
| None -> failwith "Does not match"
| Some value_1 ->
let value =
S.Expression.ident { pos; name; index = Some value_1 }
in
R { witness = expr_witness; value }))
(** Convert each internal represention for the expression into its external
representation *)
let v : t -> t' =
fun t ->
let result =
Array.map2 A.t t
~f:(fun (E { module_ = (module S); expr_witness; expr'; _ }) result ->
match get expr_witness result with
| None -> failwith "Does not match"
| Some value ->
let value = S.Expression.v value in
R { witness = expr'; value })
in
result
end
module Instruction :
S.Instruction
with type expression = Expression.t'
and type t' = result array = struct
type expression = Expression.t'
type t = result array
type t' = result array
let location : S.pos -> string -> t =
fun pos label ->
Array.map A.t ~f:(fun (E { module_ = (module S); instr_witness; _ }) ->
let value = S.Instruction.location pos label in
R { value; witness = instr_witness })
let comment : S.pos -> t =
fun pos ->
Array.map A.t ~f:(fun (E { module_ = (module S); instr_witness; _ }) ->
let value = S.Instruction.comment pos in
R { value; witness = instr_witness })
let expression : expression -> t =
fun expr ->
Array.map2 A.t expr
~f:(fun (E { module_ = (module S); instr_witness; expr'; _ }) result ->
match get expr' result with
| None -> failwith "Does not match"
| Some value ->
(* The evaluate the instruction *)
let value = S.Instruction.expression value in
R { value; witness = instr_witness })
let call : S.pos -> T.keywords -> expression list -> t =
fun pos keyword args ->
(* The arguments are given like an array of array. Each expression is
actually the list of each expression in the differents modules. *)
Array.init len ~f:(fun i ->
let (E { module_ = (module S); expr'; instr_witness; _ }) =
Array.get A.t i
in
let values = List.rev (Helper.expr_i args expr' i).values in
let value = S.Instruction.call pos keyword values in
R { witness = instr_witness; value })
let act : S.pos -> label:expression -> t list -> t =
fun pos ~label instructions ->
Array.init len ~f:(fun i ->
let (E { module_ = (module S); instr_witness; expr'; _ }) =
Array.get A.t i
in
let values =
List.rev (Helper.expr_i instructions instr_witness i).values
in
match get expr' (Array.get label i) with
| None -> failwith "Does not match"
| Some label_i ->
let value = S.Instruction.act pos ~label:label_i values in
R { witness = instr_witness; value })
(* I think it’s one of the longest module I’ve ever written in OCaml… *)
let assign :
S.pos ->
(S.pos, expression) S.variable ->
T.assignation_operator ->
expression ->
t =
fun pos { pos = var_pos; name; index } op expression ->
Array.init len ~f:(fun i ->
let (E { module_ = (module A); instr_witness; expr'; _ }) =
Array.get A.t i
in
let index_i =
Option.map
(fun expression ->
match get expr' (Array.get expression i) with
| None -> failwith "Does not match"
| Some value -> value)
index
in
let variable = S.{ pos = var_pos; name; index = index_i } in
match get expr' (Array.get expression i) with
| None -> failwith "Does not match"
| Some value ->
let value = A.Instruction.assign pos variable op value in
R { value; witness = instr_witness })
(** Helper function used to prepare the clauses *)
let map_clause : (expression, t) S.clause -> S.pos * Expression.t' * t list
=
fun clause ->
let clause_pos, expression, t = clause in
let expression = expression in
let clause = (clause_pos, expression, t) in
clause
let rebuild_clause :
type a b.
int ->
a Id.typeid ->
b Id.typeid ->
S.pos * result array * result array list ->
(b, a) S.clause =
fun i instr_witness expr' clause ->
let pos_clause, expr_clause, ts = clause in
match get expr' (Array.get expr_clause i) with
| None -> failwith "Does not match"
| Some value ->
let ts = Helper.expr_i ts instr_witness i in
let ts = List.rev ts.values in
let clause = (pos_clause, value, ts) in
clause
let if_ :
S.pos ->
(expression, t) S.clause ->
elifs:(expression, t) S.clause list ->
else_:(S.pos * t list) option ->
t =
fun pos clause ~elifs ~else_ ->
(* First, apply the report for all the instructions *)
let clause = map_clause clause and elifs = List.map elifs ~f:map_clause in
let else_ =
match else_ with
| None -> None
| Some (pos, instructions) -> Some (pos, instructions)
in
Array.init len ~f:(fun i ->
let (E { module_ = (module A); instr_witness; expr'; _ }) =
Array.get A.t i
in
let clause = rebuild_clause i instr_witness expr' clause
and elifs = List.map elifs ~f:(rebuild_clause i instr_witness expr')
and else_ =
match else_ with
| None -> None
| Some (pos, instructions) ->
let elses = Helper.expr_i instructions instr_witness i in
Some (pos, List.rev elses.values)
in
let value = A.Instruction.if_ pos clause ~elifs ~else_ in
R { value; witness = instr_witness })
(** This code is almost a copy/paste from Expression.v but I did not found
a way to factorize it. *)
let v : t -> t' =
fun t ->
let result =
Array.map2 A.t t
~f:(fun
(E { module_ = (module S); instr_witness; instr'; _ }) result ->
match get instr_witness result with
| None -> failwith "Does not match"
| Some value ->
let value = S.Instruction.v value in
R { witness = instr'; value })
in
result
end
module Location :
S.Location with type t = result array and type instruction = Instruction.t' =
struct
type instruction = Instruction.t'
type t = result array
let location : S.pos -> instruction list -> t =
fun pos args ->
ignore pos;
let result =
Array.init len ~f:(fun i ->
let (E { module_ = (module A); instr'; location_witness; _ }) =
Array.get A.t i
in
let instructions = List.rev (Helper.expr_i args instr' i).values in
let value = A.Location.location pos instructions in
R { value; witness = location_witness })
in
result
let v : t -> Report.t list =
fun args ->
let report = ref [] in
let () =
Array.iteri args ~f:(fun i result ->
let (E { module_ = (module A); location_witness; _ }) =
Array.get A.t i
in
match get location_witness result with
| None -> failwith "Does not match"
| Some value ->
let re = A.Location.v value in
report := List.rev_append re !report)
in
!report
end
end
|